pytorch中自定义反向传播,求导

本文介绍了如何在PyTorch中自定义`backward()`函数,以便在图像处理中使用自定义算法时能进行自动求导。关键在于实现`forward()`和`backward()`两个函数。当`requires_grad=True`时,自定义类继承自`torch.autograd.Function`,输出的`grad_fn`会被正确设置。`backward()`函数接收上一级梯度`grad_output`,计算并返回当前层的梯度`grad_input`,在`loss.backward()`时自动调用。
摘要由CSDN通过智能技术生成

pytorch中自定义backward()函数。在图像处理过程中,我们有时候会使用自己定义的算法处理图像,这些算法多是基于numpy或者scipy等包。那么如何将自定义算法的梯度加入到pytorch的计算图中,能使用Loss.backward()操作自动求导并优化呢。下面的代码展示了这个功能`

import torch
import numpy as np
from PIL import Image
from torch.autograd import gradcheck
class Bicubic(torch.autograd.Function):
def basis_function(self, x, a=-1):
    x_abs = np.abs(x)
    if x_abs < 1 and x_abs >= 0:
        y = (a + 2) * np.power(x_abs, 3) - (a + 3) * np.power(x_abs, 2) + 1
    elif x_abs > 1 and x_abs < 2:
        y = a * np.power(x_abs, 3) - 5 * a * np.power(x_abs, 2) + 8 * a * x_abs - 4 * a
    else:
        y = 0
    return y
def bicubic_interpolate(self,data_in, scale=1 / 4, mode='edge'):
    # data_in = data_in.detach().numpy()
    self.grad = np.zeros(data_in.shape,dtype=np.float32)
    obj_shape = (int(data_in.shape[0] * scale), int(data_in.shape[1] * scale), data_in.shape[2])
    data
PyTorch,你可以自定义非常复杂的函数,例如深度学习模型的一个层或者整个网络结构。让我们设计一个简单的卷积神经网络(CNN)层作为例子,这个层包含一个卷积、批量归一化和ReLU激活函数。假设我们有一个4维输入张量(B, C, H, W),其B代表批次大小,C是通道数,H和W是高度和宽度。 ```python import torch.nn as nn import torch.nn.functional as F class CustomLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(CustomLayer, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() def forward(self, x): x = self.conv(x) x = self.bn(x) return self.relu(x) ``` 当你想要对该层进行反向传播,可以按照以下步骤: 1. **前向传播**: - 将输入数据`x`传递给`forward`方法。 - 计算经过卷积、批量归一化和ReLU后的输出`out`。 2. **保存间结果**: - 在`forward`方法,如果你需要跟踪梯度的源头,可以在关键操作后添加`retain_grad()`,如`y.retain_grad()`,其`y`是某个间输出。 3. **定义损失函数**: - 设定损失函数,比如交叉熵 loss,`loss = criterion(out, target)`。 4. **求导**: - 使用`loss.backward()`,这会开始反向传播PyTorch会自动计算所有依赖于`loss`的张量的梯度。 5. **访问梯度**: - 如果你之前在某间结果上设置了`retain_grad()`,那么可以通过`y.grad`获取对应张量的梯度。例如,如果你想看卷积层的权重更新,可以用`self.conv.weight.grad`.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值