pytorch 自定义损失函数、优化器(Optimizer)和学习率策略(Scheduler)


免费链接: Blogger(需翻Q)


本节内容

  1. 梯度下降回顾
  2. 理解Pytorch模型定义、前向传播、反向传播、更新梯度的过程
  3. 学会并理解自定义损失函数
  4. 学会并理解优化器的作用和使用
  5. 学会并理解自定义学习策略的多种方法

梯度下降回顾

我们首先来简单的回顾一下梯度下降,我们使用一个很简单的例子来说明。

假设我们要进行一元线性回归,即我们想求 y = θ x + b y = \theta x +b

PyTorch中可以通过自定义损失函数学习率调整策略来优化模型的训练效果。 自定义损失函数: 在PyTorch中,可以通过继承`nn.Module`类,自定义损失函数。下面是一个例子: ```python import torch.nn as nn class CustomLoss(nn.Module): def __init__(self): super().__init__() def forward(self, inputs, targets): loss = ... # 计算自定义损失函数 return loss ``` 在自定义损失函数中,需要实现`forward`方法,接受模型的输出与标签作为输入,并返回损失值。 学习率调整策略PyTorch中提供了多种学习率调整策略,包括学习率衰减、学习率重启、余弦退火等。可以通过继承`torch.optim.lr_scheduler._LRScheduler`类,自定义学习率调整策略。下面是一个例子: ```python import torch.optim.lr_scheduler as lr_scheduler class CustomScheduler(lr_scheduler._LRScheduler): def __init__(self, optimizer, last_epoch=-1): super().__init__(optimizer, last_epoch) def get_lr(self): lr = ... # 计算自定义学习率调整策略 return [lr for _ in self.optimizer.param_groups] ``` 在自定义学习率调整策略中,需要实现`get_lr`方法,返回一个列表,其中每个元素是一个浮点数,代表每个参数组的学习率。 在训练过程中,可以将自定义损失函数学习率调整策略传递给优化器,例如: ```python import torch.optim as optim model = ... criterion = CustomLoss() optimizer = optim.Adam(model.parameters(), lr=1e-3) scheduler = CustomScheduler(optimizer) for epoch in range(num_epochs): for batch in data_loader: inputs, targets = batch outputs = model(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() ``` 在每个epoch结束时,调用`scheduler.step()`方法来更新学习率
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值