1. 机器学习研究的是基于大数据建模的问题,挖掘数据内在规律,是属于统计学的一个分支。传统统计学多是建立一些线性模型,机器学习除此之外还可以建立一些非线性模型。寻找一些非线性相关关系。既然是统计,也是寻找相关关系。
2. 机器学习主要分为监督学习,无监督学习,半监督学习,强化学习等。
3. 目前监督学习应用比较广泛,也是研究最多的分支。
4. 人类的学习是根据以往的经验对一类问题形成认识并总结规律,并对未来进行预测。机器学习,顾名思义,模仿人类的学习过程。它相比人类学习的学习能力是逊色许多,毕竟人类学习能力是经过几十万年人类出现逐渐形成的。但机器学习也有它的优势,便是对大数据的存储和处理的能力。举个简单的例子,机器可以毫秒秒内浏览上万条数据,人可能要几个小时。但机器不会自学习,这要人类的学习过程总结成算法,总结成人类处理问题的步骤,并把这些解决问题的方法教给计算机,这些方法便是机器学习算法。
5. 问题的复杂程度,数据的多少,是考验机器学习各种算法以及人类学习能力的关键。如果问题简单,数据足够多,大部分算法都能达到很好的效果。如果问题复杂,数据也有限,人类的能力最强。如果问题复杂,数据足够,机器会占上风的可能性大大提高。