机器学习之回归
文章平均质量分 70
夏天7788
知行合一
展开
-
转:多重共线性问题的几种解决方法
转自:https://blog.csdn.net/wangcheng666666/article/details/79187703在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,Xk中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 所谓多重共..转载 2021-01-05 14:01:07 · 7464 阅读 · 0 评论 -
转:线性回归——lasso回归和岭回归(ridge regression)
转自:https://www.cnblogs.com/wuliytTaotao/p/10837533.html线性回归——lasso回归和岭回归(ridge regression)目录线性回归——最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References线性回归很简单,用线性函数拟合数据,用 mean square error (mse) 计算损失(cost),然后用梯度下降法找到一组使 mse 最小的权重。..转载 2020-12-25 10:35:41 · 1242 阅读 · 0 评论 -
转:Python数据分箱,计算woe,iv
转自:https://zhuanlan.zhihu.com/p/38440477数据分箱的重要性及优势:离散特征的增加和减少都很容易,易于模型的快速迭代; 稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展; 离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰; 逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达转载 2020-12-22 14:03:44 · 4101 阅读 · 2 评论 -
转:IV值和WOE值的理解
转自:https://blog.csdn.net/njliaojiang817/article/details/904097991.IV的用途IV的全称是InformationValue,中文意思是信息价值,或者信息量。我们在用逻辑回归、决策树等模型方法构建分类模型时,经常需要对自变量进行筛选。比如我们有200个候选自变量,通常情况下,不会直接把200个变量直接放到模型中去进行拟合训练,而是会用一些方法,从这200个自变量中挑选一些出来,放进模型,形成入模变量列表。那么我们怎么去挑选入模变量呢.转载 2020-12-22 13:57:01 · 804 阅读 · 0 评论 -
多重共线性:python计算VIF以及使用vif做因子独立性检验的方法
转自:https://blog.csdn.net/ab1112221212/article/details/100133066多重共线性在python中的解决方法本文将讨论多重共线性的相关概念及利用python自动化消除多重共线性的方法,以供参考,欢迎拍砖线性模型与非线性模型关于线性模型与非线性模型的定义,似乎并没有确切的定论,但是个人认为建模首先得清楚地认识样本,样本有线性可分与线性不可分两种,所谓是否线性可分,是指是否存在一条直线(或平面)将样本分开。上图中y=0和y=1的样本可以由一原创 2020-12-22 11:06:03 · 8347 阅读 · 0 评论 -
转:机器学习是否需要考虑共线性、异方差等问题?
转自:https://www.zhihu.com/question/310448033/answer/596576732作者:刘一刀链接:https://www.zhihu.com/question/310448033/answer/596576732来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。机器学习里只不过是换了名字,l1正则化和l2正则化实际上就是套索回归和岭回归,实际上就是为了解决异方差等问题。共线性的话要具体看,比如我的模型只是为了预测,那么.转载 2020-12-21 14:57:29 · 772 阅读 · 0 评论 -
转:回归分析和相关分析的区别和联系
转自:https://blog.csdn.net/mo18312723429/article/details/85806762转载 2020-12-17 10:47:15 · 466 阅读 · 0 评论 -
转:线性回归标准化与R、T、F
转自:https://blog.csdn.net/jinruoyanxu/article/details/51628441?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1.control1、标准化对于多元线性回归需要对各个自转载 2020-12-17 09:54:34 · 2672 阅读 · 0 评论 -
线性回归和逻辑回归
from:https://blog.csdn.net/jiaoyangwm/article/details/81139362文章目录一、什么是机器学习二、线性回归2.1 线性回归的表达式三、逻辑回归3.1 逻辑回归的损失函数3.2 逻辑回归实现多分类四、LR的特点五、 为什么逻辑回归比线性回归好六、 LR和SVM的关系一、什么是机器学习利用大量的数据样本,使得计算机通...转载 2018-11-28 16:24:58 · 314 阅读 · 0 评论 -
使用随机逻辑回归进行特征筛选,并利用筛选后的特征建立逻辑回归模型
from:https://blog.csdn.net/carolinedy/article/details/80691877 from sklearn.linear_model import LogisticRegression as LR from sklearn.linear_model import RandomizedLogisticRegression as R...转载 2018-09-28 15:53:02 · 4274 阅读 · 0 评论 -
多元线性回归模型的t检验和回归系数的置信区间
from:http://classroom.dufe.edu.cn/spsk/c102/wlkj/CourseContents/Chapter03/03_08_01.htm t检验和回归系数的置信区间 当上述F检验结论是推翻H0时,并不见得每个解释变量都对yt有显著的解释作用(即不见得每一个都是重要解释变量),所以还应对每个解释变量的系数进行显著性检验。零假设转载 2017-02-13 14:06:03 · 31966 阅读 · 0 评论 -
教你如何读懂线性回归lm的结果summary(判断显著性)
from:http://f.dataguru.cn/thread-14689-1-1.html> lm.sol <- lm(Y ~ . ,data=a);summary(lm.sol)Call:lm(formula = Y ~ ., data = a)Residuals: Min 1Q Median 3Q Max -28.349 -11.383 -...转载 2017-02-13 15:29:30 · 33590 阅读 · 0 评论 -
回归评价指标
from:http://blog.csdn.net/heyongluoyao8/article/details/49408319回归评价指标 与分类不同的是,回归是对连续的实数值进行预测,即输出值是连续的实数值,而分类中是离散值。例如,给你历史股票价格,公司与市场的一些信息,需要你去预测将来一段时间内股票的价格走势。那么这个任务便是回归任务。对于回归模型的评价指标主要有以下几种:转载 2017-02-24 09:57:59 · 7359 阅读 · 0 评论 -
sklearn一元线性回归
from:http://blog.csdn.net/lulei1217/article/details/49385531回归是统计学中最有力的工具之一。机器学习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。顾名思义,分类算法用于离散型分布预测,如前面讲过的KNN、决策树、朴素贝叶斯、adaboost、SVM、Logistic回归都是分类算转载 2017-02-10 16:15:22 · 3407 阅读 · 0 评论 -
使用python统计建模和计量经济学工具包Statsmodels进行线性回归
from: http://www.vkandian.cn/news_keji/topic_2153383/Statsmodels是Python的统计建模和计量经济学工具包,包括一些描述统计、统计模型估计和推断。理解什么是线性回归线性回归也被称为最小二乘法回归(Linear Regression, also called Ordinary Least-Squares (OLS) Regressi...转载 2017-02-12 17:03:26 · 51742 阅读 · 6 评论 -
线性回归基础知识
理解什么是线性回归线性回归也被称为最小二乘法回归(Linear Regression, also called Ordinary Least-Squares (OLS) Regression)。它的数学模型是这样的:y = a+ b* x+e其中,a被称为常数项或截距;b被称为模型的回归系数或斜率;e为误差项。a和b是模型的参数。原创 2017-02-13 14:01:50 · 2774 阅读 · 0 评论 -
多元线性回归模型的F检验
F检验 对于多元线性回归模型,在对每个回归系数进行显著性检验之前,应该对回归模型的整体做显著性检验。这就是F检验。当检验被解释变量yt与一组解释变量x1, x2 , ... , xk -1是否存在回归关系时,给出的零假设与备择假设分别是H0:b1 = b2 = ... = bk-1 = 0 ,H1:bi, i = 1, ..., k -1不全为零。首先要构造F统计量。由(3.36转载 2017-02-13 14:03:08 · 88002 阅读 · 2 评论 -
机器学习入门:线性回归及梯度下降
from:http://blog.csdn.net/xiazdong/article/details/7950084本文会讲到:(1)线性回归的定义(2)单变量线性回归(3)cost function:评价线性回归是否拟合训练集的方法(4)梯度下降:解决线性回归的方法之一(5)feature scaling:加快梯度下降执行速度的方法(6)多转载 2017-05-23 10:48:16 · 317 阅读 · 0 评论 -
对线性回归,logistic回归和一般回归的认识
from:http://blog.csdn.net/statdm/article/details/75851531 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识。前四节主要讲述了回归问题,回归属于有监督学习中的一种方法。该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类。该方法处理的数据可以是多维的。转载 2017-05-23 11:20:43 · 453 阅读 · 0 评论