机器学习之分类
文章平均质量分 63
夏天7788
知行合一
展开
-
转:sklearn 用户手册之1.12. 多类别与多标签算法
from:https://blog.csdn.net/fanyingkk/article/details/80240663翻译官方文档:http://scikit-learn.org/stable/modules/multiclass.html#id41.12. 多类别与多标签算法Multiclass and multilabel algorithms*警告scikit-learn中所有分类器做多类别分类是开箱即用的。除非你想实验不同的多分类策略,否则没有必要使用sklearn.multi转载 2021-04-07 14:35:02 · 1002 阅读 · 1 评论 -
python向量之间相似性的计算方法(持续更新中)
from:https://blog.csdn.net/u011412768/article/details/86714540亲测有效的方法:1、余弦相似性(cosine)(1)使用sklearn中的向量相似性的计算包,代码如下:这个函数的输入是n个长度相同的list或者array,函数的处理是计算这n个list两两之间的余弦相似性,最后生成的相似矩阵中的s[i]...转载 2019-06-10 17:48:16 · 5748 阅读 · 0 评论 -
大话机器学习之STACKing,一个让诸葛亮都吃瘪的神技
转:https://blog.csdn.net/qq_18916311/article/details/78557722首先 感谢蓝蓝的原文,大话的基础是建立在朋友的原始stacking技术分享之上的。stakcing常常在各大数据挖掘竞赛中被广泛使用,号称“大杀器”。是数据挖掘竞赛高端玩家必备技能,本篇文章就以大话机器学习的角度来阐述,stacking究竟是一个什么样的神技,竟然让牛B哄...转载 2018-11-28 16:27:50 · 198 阅读 · 0 评论 -
XGBOOST参数调优
from:https://www.cnblogs.com/zhangbojiangfeng/p/6428988.htmlXGBoost参数调优http://blog.csdn.net/hhy518518/article/details/54988024摘要:转载:http://blog.csdn.NET/han_xiaoyang/article/details/52665396...转载 2018-08-02 17:42:04 · 10334 阅读 · 0 评论 -
xgboost 模型展示 特征重要性和决策树形状
# *********get xgb model's feature importance************b2_model = xgb.Booster(model_file=model_path + '/b2_model_12.model')importance = b2_model.get_fscore()importance = sorted(importance.items(...原创 2018-08-02 15:44:23 · 2901 阅读 · 0 评论 -
关于多分类器融合算法
1.bagging 使用多个分类其结果进行投票,投票结果为分类结果2.ADABoost:将多个弱分类器合成一个较强的分类器转:bootstrps bagging boosting这几个概念经常用到,现仔细学习了一下:他们都属于集成学习方法,(如:Bagging,Boosting,Stacking),将训练的学习器集成在一起,原理来源于PAC学习模型(Probab转载 2016-07-27 16:30:38 · 9845 阅读 · 0 评论 -
机器学习——决策树算法原理及案例
转自:https://yq.aliyun.com/articles/54513摘要: 机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言和转载 2016-12-06 12:58:03 · 16553 阅读 · 1 评论 -
决策树系列(二)——剪枝
转自:http://www.cnblogs.com/yonghao/p/5064996.html什么是剪枝? 剪枝是指将一颗子树的子节点全部删掉,根节点作为叶子节点,以下图为例: 为甚么要剪枝? 决策树是充分考虑了所有的数据点而生成的复杂树,有可能出现过拟合的情况,决策树越复杂,过拟合的程度会越高。 考虑极转载 2016-12-06 13:31:14 · 2244 阅读 · 1 评论 -
几种Boost算法的比较
转自:http://www.cnblogs.com/jcchen1987/p/4581651.html关于boost算法 boost算法是基于PAC学习理论(probably approximately correct)而建立的一套集成学习算法(ensemble learning)。其根本思想在于通过多个简单的弱分类器,构建出准确率很高的强分类器,PAC学习理论证实了转载 2016-12-12 14:55:15 · 10675 阅读 · 0 评论 -
Gradient Boosting算法简介
转自:http://www.cnblogs.com/zhubinwang/p/5170087.html最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包 scikit-learn 中的GradientBoostingRegressor完成因此就学习了下Gradient Boosting算法,在这里分转载 2016-12-14 22:50:52 · 11521 阅读 · 0 评论 -
LibSVM学习详细说明
转自:http://blog.csdn.net/zy_zhengyang/article/details/45009431代码文件主要针对Matlab进行说明,但个人仍觉得讲解的支持向量机内容非常棒,可以做为理解这一统计方法的辅助资料; LibSVM是台湾林智仁(Chih-Jen Lin)教授2001年开发的一套支持向量机的库,这套库运算速度还是挺快的,可以很方便的对转载 2016-12-19 11:03:11 · 1979 阅读 · 0 评论 -
libsvm 核函数 交叉验证 参数优化
转自:http://blog.csdn.net/chlele0105/article/details/170269631.下载及安装libsvm3.1下载:http://download.csdn.net/detail/chlele0105/6631687里面包含了libsvm和参数寻优算法,GA,GridSearch,PSO等安装:http://www转载 2016-12-20 16:10:06 · 3814 阅读 · 0 评论 -
支持向量机(五)SMO算法
SVM系列:http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html11 SMO优化算法(Sequential minimal optimization)SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数转载 2016-07-30 11:55:05 · 632 阅读 · 0 评论 -
决策树算法的优缺点
转自:http://blog.csdn.net/gamer_gyt/article/details/51226904决策树算法的优点:1:理解和解释起来简单,且决策树模型可以想象2:需要准备的数据量不大,而其他的技术往往需要很大的数据集,需要创建虚拟变量,去除不完整的数据,但是该算法对于丢失的数据不能进行准确的预测3:决策树算法的时间复杂度(即预测数据)是用于训练决策树的数据点的对转载 2017-01-11 09:06:38 · 29092 阅读 · 0 评论 -
浅谈 Adaboost 算法
from: http://blog.csdn.net/haidao2009/article/details/7514787菜鸟最近开始学习machine learning。发现adaboost 挺有趣,就把自己的一些思考写下来。主要参考了http://stblog.baidu-tech.com/?p=19,其实说抄也不为过,但是我添加了一些我认为有意思的东西,所以我还是把它贴出转载 2017-03-13 09:22:22 · 305 阅读 · 0 评论 -
XGBoost:多分类问题
转自:http://blog.csdn.net/leo_xu06/article/details/52424924下面用数据 UCI Dermatology dataset演示XGBoost的多分类问题首先要安装好XGBoost的C++版本和相应的Python模块,然后执行如下脚本,如果本地没有训练所需要的数据,runexp.sh负责从https://archive.ics.u转载 2017-03-15 14:37:54 · 1812 阅读 · 0 评论 -
XGBoost Stopping to Avoid Overfitting(early_stopping_rounds )
from:http://blog.csdn.net/lujiandong1/article/details/52777168XGBoost模型和其他模型一样,如果迭代次数过多,也会进入过拟合。表现就是随着迭代次数的增加,测试集上的测试误差开始下降。当开始过拟合或者过训练时,测试集上的测试误差开始上升,或者说波动。下面通过实验来说明这种情况:下面实验数据的来源:https://archi转载 2017-03-15 15:29:30 · 4501 阅读 · 1 评论 -
转载:scikit-learn学习之SVM算法
from:http://www.cnblogs.com/harvey888/p/5852687.html转载,http://blog.csdn.net/gamer_gyt目录(?)[+]======================================================================本系列博客主要参考 Sciki转载 2017-06-16 09:46:43 · 668 阅读 · 0 评论