定积分及其基本性质

引入

  1. 速度的例子
    定义速度为时间的函数 v ( t ) v(t) v(t)。对于任意的时间间隔 Δ t \Delta t Δt,对应的路程变化量为 Δ s = v ( t ) ∗ Δ t \Delta s = v(t) * \Delta t Δs=v(t)Δt

对于任意有限长的时间间隔,我们都可以将其细分成更多的时间间隔,这样总的路程就是 ∑ s = ∑ i v i ( t ) ∗ Δ t \sum s = \sum_i v_i(t) * \Delta t s=ivi(t)Δt

问题是,如果每段速度的对于时间的常量,以上的计算公式是正确的。那么如何使得任意的速度对时间的函数都满足以上的条件呢?

我们可以引入极限。

定义

Def. 1 定积分

对于函数 f ( x ) f(x) f(x),若其在 [ a , b ] [a, b] [a,b]区间上有定义,对其进行如下操作:

在区间内选定 n + 1 n+1 n+1个点,其中 a < x 0 < x 1 < . . . < x n = b a<x_0<x_1<...<x_n=b a<x0<x1<...<xn=b

Δ x i = x i − x i − 1 , i ∈ ( 1 , n ] \Delta x_i=x_i-x_{i-1}, i\in(1, n] Δxi=xixi1,i(1,n]. 在每个 Δ \Delta Δ内取任一 ξ i ∈ [ x i , x i − 1 ] \xi_i \in [x_i, x_{i-1}] ξi[xi,xi1]

记和式 I = ∑ i f ( ξ i ) ∗ Δ x i I = \sum_i f(\xi_i) * \Delta x_i I=if(ξi)Δxi

λ = m a x Δ x i \lambda=max{\Delta x_i} λ=maxΔxi.

lim ⁡ λ → 0 I \lim\limits_{\lambda\rightarrow0}I λ0limI存在,记 lim ⁡ λ → 0 I = ∫ a b f ( x ) d x \lim\limits_{\lambda\rightarrow0}I=\int_{a}^{b}f(x)dx λ0limI=abf(x)dx.

Notes on Def. 1

  1. λ → 0 \lambda \rightarrow 0 λ0 不等价于 n → ∞ n \rightarrow \infty n
  2. 极限的存在与区间分割的方法无关,即,任意的分割都应该得到极限存在,但任意的分割必须保证 λ → 0 \lambda \rightarrow 0 λ0.
  3. ∫ a b f ( x ) d x = lim ⁡ x → ∞ ∑ i f ( a + i ∗ ( b − a ) a ) ∗ b − a n \int_a^bf(x)dx = \lim\limits_{x\rightarrow\infty}\sum_if(a+\frac{i*(b-a)}{a})*\frac{b-a}{n} abf(x)dx=xlimif(a+ai(ba))nba

定积分的基本性质

  1. ∫ a b 1 d x = ( b − a ) \int_a^b1dx=(b-a) ab1dx=(ba)

  2. ∫ a b k 1 f ( x ) + k 2 g ( x ) = k 1 ∫ a b f ( x ) + k 2 ∫ a b g ( x ) \int_a^bk_1f(x)+k_2g(x)=k_1\int_a^bf(x)+k_2\int_a^bg(x) abk1f(x)+k2g(x)=k1abf(x)+k2abg(x)
    Proof:
    实际上这部分可以分解成两个性质,加法性质和乘积性质。

  3. ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \int_a^bf(x)dx=-\int_b^af(x)dx abf(x)dx=baf(x)dx
    Proof:由2即得。

  4. ∫ a a f ( x ) d x = 0 \int_a^af(x)dx = 0 aaf(x)dx=0

    Proof:由2即得。

  5. 可积的必要条件:函数有界。

    Proof:极限的加法性质

  6. 可积的充分条件:有界函数在区间上至多有有限个间断点或单调。

    证明超出教材范围。 立即得到推论: 连续有界函数必可积。即,有限区间内的连续函数必可积。

  7. ∫ a b f ( x ) d x + ∫ b c f ( x ) d c = ∫ a c f ( x ) d x \int_a^bf(x)dx + \int_b^cf(x)dc = \int_a^cf(x)dx abf(x)dx+bcf(x)dc=acf(x)dx

    展开极限式处理连接处进行讨论即可。

  8. 保号性 设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积非负。于是有 ∫ a b f ( x ) d x ≥ 0 \int_a^bf(x)dx \ge0 abf(x)dx0

    Proof:

基本定理及其证明

Th1. 牛顿-莱布尼兹公式

F ( x ) F(x) F(x) f ( x ) f(x) f(x)的一个原函数。有 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^bf(x)dx=F(b)-F(a) abf(x)dx=F(b)F(a).

Proof:

∫ a b f ( x ) d x = lim ⁡ λ → ∞ ∑ f ( ξ i ) Δ x i = ∑ F ′ ( ξ i ) Δ x i = ∑ F ( x i ) − F ( x i − 1 ) = F ( b ) − F ( a ) \int_a^bf(x)dx=\lim\limits_{\lambda\rightarrow\infty}\sum f(\xi_i)\Delta x_i =\sum F'(\xi_i)\Delta{x_i}=\sum F(x_i)-F(x_{i-1}) = F(b) - F(a) abf(x)dx=λlimf(ξi)Δxi=F(ξi)Δxi=F(xi)F(xi1)=F(b)F(a)

Th2. 积分中值定理

f ( x ) ∈ [ a , b ] f(x)\in[a,b] f(x)[a,b],可积。则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_a^bf(x)dx=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)

Proof:

​ 设 1 b − a ∫ a b f ( x ) d x = μ \frac{1}{b-a}\int_a^bf(x)dx=\mu ba1abf(x)dx=μ,即得 ∫ a b [ f ( x ) − μ ] d x = 0 \int_a^b[f(x)-\mu]dx=0 ab[f(x)μ]dx=0

​ 假设不存在 ξ \xi ξ使得 f ( ξ ) = μ f(\xi)=\mu f(ξ)=μ,那么由于函数连续以及极限的保号性,上述积分值必然不为0.

Th3. 广义积分中值定理

f ( x ) , g ( x ) ∈ C [ a , b ] f(x), g(x)\in C[a,b] f(x),g(x)C[a,b],且 g ( x ) g(x) g(x)不变号。则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int_a^bf(x)g(x)dx=f(\xi)\int_a^bg(x)dx abf(x)g(x)dx=f(ξ)abg(x)dx

可以类似Th2进行证明。对于闭区间上也有类似结论,其证明使用的是介值定理。

Th4. 微积分基本定理

f ( x ) ∈ [ a , b ] f(x)\in [a,b] f(x)[a,b],可积。设 Φ ( x ) = ∫ a x f ( x ) d x \Phi(x)=\int_a^xf(x)dx Φ(x)=axf(x)dx,于是有 Φ ′ ( x ) = f ( x ) \Phi'(x)=f(x) Φ(x)=f(x)

Proof:

Δ Φ = ϕ ( x + Δ x ) − Φ ( x ) = ∫ a x + Δ x f ( x ) d x − ∫ a x f ( x ) d x = ∫ x x + Δ x f ( x ) d x = f ( ξ ) Δ x \Delta\Phi=\phi(x+\Delta x) - \Phi(x) = \int_a^{x+\Delta x}f(x)dx-\int_a^xf(x)dx=\int_x^{x+\Delta x}f(x)dx=f(\xi)\Delta x ΔΦ=ϕ(x+Δx)Φ(x)=ax+Δxf(x)dxaxf(x)dx=xx+Δxf(x)dx=f(ξ)Δx

Δ x → 0 \Delta x \rightarrow 0 Δx0,上式变为 lim ⁡ Δ x → 0 Δ Φ Δ x = f ( x ) \lim\limits_{\Delta x \rightarrow 0}\frac{\Delta \Phi}{\Delta x} = f(x) Δx0limΔxΔΦ=f(x). 得证。

Th5. 莱布尼兹公式

d d x ∫ α ( x ) β ( x ) f ( t ) d t = f ( β ( x ) ) β ′ ( x ) − f ( α ( x ) ) α ′ ( x ) \frac{d}{dx}\int_{\alpha(x)}^{\beta(x)}f(t)dt=f(\beta(x))\beta'(x)-f(\alpha(x))\alpha'(x) dxdα(x)β(x)f(t)dt=f(β(x))β(x)f(α(x))α(x)

该公式的证明利用换元法是显然的。目前还没有证明换元法。

常见性质

分部积分法

∫ a b u d v = u v ∣ a b − ∫ a b v d u \int_a^budv=uv|_a^b-\int_a^bvdu abudv=uvababvdu

换元积分法

∫ a b f ( x ) d x = ∫ α β f ( ϕ ( t ) ) ϕ ′ ( t ) d t \int_a^bf(x)dx=\int_{\alpha}^{\beta}f(\phi(t))\phi'(t)dt abf(x)dx=αβf(ϕ(t))ϕ(t)dt

Proof: r h s = F ( ϕ ( β ) ) − F ( ϕ ( α ) ) = F ( b ) − F ( a ) = l h s rhs=F(\phi(\beta)) - F(\phi(\alpha)) = F(b)-F(a)=lhs rhs=F(ϕ(β))F(ϕ(α))=F(b)F(a)=lhs

sin(x) 和 cos(x)的性质

∫ 0 π 2 f ( s i n ( x ) ) d x = ∫ 0 π 2 f ( c o s ( x ) ) d x \int_0^{\frac{\pi}{2}}f(sin(x))dx = \int_0^{\frac{\pi}{2}}f(cos(x))dx 02πf(sin(x))dx=02πf(cos(x))dx

Proof: 令 t = x − π 2 t = x - \frac\pi2 t=x2π

∫ 0 π x f ( s i n ( x ) ) d x = π 2 ∫ 0 π x f ( s i n ( x ) ) d x \int_0^{\pi}xf(sin(x))dx=\frac{\pi}2\int_0^\pi xf(sin(x))dx 0πxf(sin(x))dx=2π0πxf(sin(x))dx

Proof: 令 t = x − π t = x - \pi t=xπ.

∫ 0 π 2 c o s m ( x ) d x \int_0^{\frac{\pi}{2}}cos^m(x)dx 02πcosm(x)dx(Wallis公式)

Proof:

由等价性即得对于 s i n ( x ) sin(x) sin(x)有同样的结果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值