微分学基础概念

本文介绍了微分学的基本概念,包括导数的定义及其与函数连续性的关系。讨论了导数作为极限、可导性与连续性的联系,以及一元函数在某点可导的充分必要条件。此外,还提到了微分的定义,以及微分与导数之间的区别。重点讲解了复合函数求导的链式法则,并概述了利用导数判断函数单调性和凹凸性的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一元函数微分学

理论部分

导数的定义

设 f ( x ) 在 x 的 临 域 内 有 定 义 。 若   lim ⁡ h → 0 f ( x + h ) − f ( x ) h ∃ ,   定 义 这 个 极 限 值 为 函 数 f ( x ) 在 x 点 处 的 导 数 , 记 作 f ′ ( x ) 。 设f(x)在x的临域内有定义。若 ~\lim \limits_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \exist, ~定义这个极限值为函数f(x)在x点处的导数,记作f'(x)。 f(x)x h0limhf(x+h)f(x), f(x)xf(x)

注释:

  1. 从形式上来看导数也是一个极限,它要求函数的变化量不可以是自变量变化量的低阶无穷小。

  2. 导数的定义要求 函数可求极限 并且 在这一点处有定义

  3. 闭区间的端点处是没有导数的,因为它不是一个临域。这也是为什么各种定理要求闭区间连续、开区间可导的原因。

    从2、3两条可以出一类题:给出一个极限,但是可以改写成导数的形式,要求我们去判断这个式子能否推倒出一些关于导数的性质。

例1

设 f ( 0 ) = 0 。 则 f ( x ) 在 x = 0 处 可 导 的 充 要 条 件 是 设f(0)=0。则f(x)在x=0处可导的充要条件是 f(0)=0f(x)x=0

A .   lim ⁡ h → 0 f ( 1 − c o s   h ) h 2 ∃ A. ~\lim \limits_{h \rightarrow 0} \frac{f(1 - cos ~h)}{h^2} \exist A. h0limh2f(1cos h)

B .   lim ⁡ h → 0 f ( 1 − e h ) h ∃ B. ~\lim \limits_{h \rightarrow 0} \frac{f(1 - e^h)}{h} \exist B. h0limhf(1eh)

C .   lim ⁡ h → 0 f ( h − s i n   h ) h 2 ∃ C. ~\lim \limits_{h \rightarrow 0} \frac{f(h - sin ~h)}{h^2} \exist C. h0limh2f(hsin h)

D .   lim ⁡ h → 0 f ( 2 h ) − f ( h ) h ∃ D. ~\lim \limits_{h \rightarrow 0} \frac{f(2h) - f(h)}{h} \exist D. h0limhf(2h)f(h)

本题主要考察了导数的定义,当然更多考察的还是极限的四则运算法则和极限的定义。

首先,四个选项的必要性都是正确的,其中ABC要使用极限的乘法法则;D要使用极限的加法法则。

然后考察充分性。

A选项的充分性错误在于,换元之后极限等价于 f ′ ( 0 + ) f'(0^+) f(0+)

C选项的错误在于,最后极限等价于 d f ( x ) = A x 2 / 3 + O ( x 2 / 3 ) df(x) = Ax^{2/3} + O(x^{2/3}) df(x)=Ax2/3+O(x2/3),根本不知道这个极限存不存在。*

D选项的错误在于,减法存在是推不出来极限相减存在的。

下面整理一下极限存在和不存在的一些情况。

原形式A, B都存在A, B都不存在A, B一个存在,一个不存在
A+B存在可能可能不可能
A * B存在可能可能可能
A / B存在可能可能可能

注意不连续函数的例子,D选项就可以举这样的例子。

例2

函数在 f ( x ) = 0 f(x) = 0 f(x)=0处连续。则:

若   lim ⁡ x → 0 f ( x ) x ∃ , 有 f ( 0 ) = 0 , f ′ ( 0 ) ∃ 若~\lim \limits_{x \rightarrow 0} \frac{f(x)}{x} \exist,有f(0) = 0, f'(0) \exist  x0limxf(x)f(0)=0,f(0)

若   lim ⁡ x → 0 f ( x ) + f ( − x ) x ∃ , 可 以 有   lim ⁡ x → 0 f ( x ) + f ( − x ) = 0 。 又 因 为 f ( x ) = 0 连 续 , 那 么 两 个 极 限 都 不 会 不 存 在 。 若~\lim \limits_{x \rightarrow 0} \frac{f(x) + f(-x)}{x} \exist,可以有~\lim \limits_{x \rightarrow 0} f(x) + f(-x) = 0。又因为f(x) = 0 连续,那么两个极限都不会不存在。  x0limxf(x)+f(x) x0limf(x)+f(x)=0f(x)=0

于 是 可 以 改 写 成   lim ⁡ x → 0 f ( x ) +   lim ⁡ x → 0 f ( − x ) = 0 , 再 次 应 用 连 续 得 到 2 f ( x ) = 0. 但 是 这 个 条 件 依 然 推 不 出 f ′ ( x ) 存 在 于是可以改写成~\lim \limits_{x \rightarrow 0} f(x) + ~\lim \limits_{x \rightarrow 0} f(-x) = 0,再次应用连续得到2f(x) = 0. 但是这个条件依然推不出f'(x)存在  x0limf(x)+ x0limf(x)=02f(x)=0.f(x)

微分的定义

Δ y = A Δ x + o ( Δ x ) \Delta y = A\Delta x + o(\Delta x) Δy=AΔx+o(Δx)

函数的改变量可以用线性函数表示

微分定理:函数在一点可微当且仅当在这点可导,并且 d y = f ′ ( x ) d x dy = f'(x)dx dy=f(x)dx

注意一阶微分形式不变形,在二阶以及后面的阶都是不能用的。

注:
虽然微分和导数的存在性具有一致的判别方式,但是二者并不是完全等同的东西。

三者的关系

可导一定连续、连续不一定可导。

可导也不代表着导函数有极限、或者更进一步的,导函数存在。

在某一点可导只是说明了导函数在这一点处有定义,给不出临域内的任何信息。

如何计算

复合函数求导(重要)

定理:设 u = ϕ ( x ) 在 x 处 可 导 , y = f ( u ) 在 u 处 可 导 , 则 复 合 函 数 y = f ( ϕ ( u ) ) 在 u 处 可 导 , 有 导 数 d y d x = d y d u d u d x u = \phi(x)在x处可导,y = f(u)在u处可导,则复合函数y = f(\phi(u))在u处可导,有导数\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} u=ϕ(x)xy=f(u)uy=f(ϕ(u))udxdy=dudydxdu

这是一个充分条件。仍然存在在这一点不可导但是复合之后可导的情况。

处理的时候直接带入具体值而不是取极限,因为定理在证明的过程中已经取过极限了。

隐函数求导
参数方程求导

单调性和凹凸性判别

单调性凹凸性
定义在临域内有定义在区间内连续
必要条件一阶可导时导数为零,不可导的驻点当然也有可能二阶可以导时导数为零,不可导的驻点当然也有可能
第一充分条件要求该点处的去心临域一阶可导,判断一阶导数的形状(这样就包括了所有可能的极值点:驻点和不可导的点)要求该点的去心临域二阶可导,判断二阶导数的形状
第二充分条件要求该点处一阶可导为0,二阶导数存在要求该点处二阶可导为0,三阶导数存在
第三充分条件要求该点n阶可导,1~n-1都为0要求该点n阶可以导,2~n-1都为0

实际上凹凸性和单调性的要求差了一阶;本质上单调性在考察一阶导数的性态,凹凸性考察的是二阶导数。

但是二者定义时的要求不同,一个要求临域有定义即可,一个要求区间内要连续。

凹凸性指的是向y轴的凹凸。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值