一元函数微分学
理论部分
导数的定义
设 f ( x ) 在 x 的 临 域 内 有 定 义 。 若 lim h → 0 f ( x + h ) − f ( x ) h ∃ , 定 义 这 个 极 限 值 为 函 数 f ( x ) 在 x 点 处 的 导 数 , 记 作 f ′ ( x ) 。 设f(x)在x的临域内有定义。若 ~\lim \limits_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \exist, ~定义这个极限值为函数f(x)在x点处的导数,记作f'(x)。 设f(x)在x的临域内有定义。若 h→0limhf(x+h)−f(x)∃, 定义这个极限值为函数f(x)在x点处的导数,记作f′(x)。
注释:
-
从形式上来看导数也是一个极限,它要求函数的变化量不可以是自变量变化量的低阶无穷小。
-
导数的定义要求 函数可求极限 并且 在这一点处有定义。
-
闭区间的端点处是没有导数的,因为它不是一个临域。这也是为什么各种定理要求闭区间连续、开区间可导的原因。
从2、3两条可以出一类题:给出一个极限,但是可以改写成导数的形式,要求我们去判断这个式子能否推倒出一些关于导数的性质。
例1
设 f ( 0 ) = 0 。 则 f ( x ) 在 x = 0 处 可 导 的 充 要 条 件 是 设f(0)=0。则f(x)在x=0处可导的充要条件是 设f(0)=0。则f(x)在x=0处可导的充要条件是
A . lim h → 0 f ( 1 − c o s h ) h 2 ∃ A. ~\lim \limits_{h \rightarrow 0} \frac{f(1 - cos ~h)}{h^2} \exist A. h→0limh2f(1−cos h)∃
B . lim h → 0 f ( 1 − e h ) h ∃ B. ~\lim \limits_{h \rightarrow 0} \frac{f(1 - e^h)}{h} \exist B. h→0limhf(1−eh)∃
C . lim h → 0 f ( h − s i n h ) h 2 ∃ C. ~\lim \limits_{h \rightarrow 0} \frac{f(h - sin ~h)}{h^2} \exist C. h→0limh2f(h−sin h)∃
D . lim h → 0 f ( 2 h ) − f ( h ) h ∃ D. ~\lim \limits_{h \rightarrow 0} \frac{f(2h) - f(h)}{h} \exist D. h→0limhf(2h)−f(h)∃
本题主要考察了导数的定义,当然更多考察的还是极限的四则运算法则和极限的定义。
首先,四个选项的必要性都是正确的,其中ABC要使用极限的乘法法则;D要使用极限的加法法则。
然后考察充分性。
A选项的充分性错误在于,换元之后极限等价于 f ′ ( 0 + ) f'(0^+) f′(0+)。
C选项的错误在于,最后极限等价于 d f ( x ) = A x 2 / 3 + O ( x 2 / 3 ) df(x) = Ax^{2/3} + O(x^{2/3}) df(x)=Ax2/3+O(x2/3),根本不知道这个极限存不存在。*
D选项的错误在于,减法存在是推不出来极限相减存在的。
下面整理一下极限存在和不存在的一些情况。
原形式 | A, B都存在 | A, B都不存在 | A, B一个存在,一个不存在 |
---|---|---|---|
A+B存在 | 可能 | 可能 | 不可能 |
A * B存在 | 可能 | 可能 | 可能 |
A / B存在 | 可能 | 可能 | 可能 |
注意不连续函数的例子,D选项就可以举这样的例子。
例2
函数在 f ( x ) = 0 f(x) = 0 f(x)=0处连续。则:
若 lim x → 0 f ( x ) x ∃ , 有 f ( 0 ) = 0 , f ′ ( 0 ) ∃ 若~\lim \limits_{x \rightarrow 0} \frac{f(x)}{x} \exist,有f(0) = 0, f'(0) \exist 若 x→0limxf(x)∃,有f(0)=0,f′(0)∃
若 lim x → 0 f ( x ) + f ( − x ) x ∃ , 可 以 有 lim x → 0 f ( x ) + f ( − x ) = 0 。 又 因 为 f ( x ) = 0 连 续 , 那 么 两 个 极 限 都 不 会 不 存 在 。 若~\lim \limits_{x \rightarrow 0} \frac{f(x) + f(-x)}{x} \exist,可以有~\lim \limits_{x \rightarrow 0} f(x) + f(-x) = 0。又因为f(x) = 0 连续,那么两个极限都不会不存在。 若 x→0limxf(x)+f(−x)∃,可以有 x→0limf(x)+f(−x)=0。又因为f(x)=0连续,那么两个极限都不会不存在。
于 是 可 以 改 写 成 lim x → 0 f ( x ) + lim x → 0 f ( − x ) = 0 , 再 次 应 用 连 续 得 到 2 f ( x ) = 0. 但 是 这 个 条 件 依 然 推 不 出 f ′ ( x ) 存 在 于是可以改写成~\lim \limits_{x \rightarrow 0} f(x) + ~\lim \limits_{x \rightarrow 0} f(-x) = 0,再次应用连续得到2f(x) = 0. 但是这个条件依然推不出f'(x)存在 于是可以改写成 x→0limf(x)+ x→0limf(−x)=0,再次应用连续得到2f(x)=0.但是这个条件依然推不出f′(x)存在
微分的定义
Δ y = A Δ x + o ( Δ x ) \Delta y = A\Delta x + o(\Delta x) Δy=AΔx+o(Δx)
函数的改变量可以用线性函数表示
微分定理:函数在一点可微当且仅当在这点可导,并且 d y = f ′ ( x ) d x dy = f'(x)dx dy=f′(x)dx。
注意一阶微分形式不变形,在二阶以及后面的阶都是不能用的。
注:
虽然微分和导数的存在性具有一致的判别方式,但是二者并不是完全等同的东西。
三者的关系
可导一定连续、连续不一定可导。
可导也不代表着导函数有极限、或者更进一步的,导函数存在。
在某一点可导只是说明了导函数在这一点处有定义,给不出临域内的任何信息。
如何计算
复合函数求导(重要)
定理:设 u = ϕ ( x ) 在 x 处 可 导 , y = f ( u ) 在 u 处 可 导 , 则 复 合 函 数 y = f ( ϕ ( u ) ) 在 u 处 可 导 , 有 导 数 d y d x = d y d u d u d x u = \phi(x)在x处可导,y = f(u)在u处可导,则复合函数y = f(\phi(u))在u处可导,有导数\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} u=ϕ(x)在x处可导,y=f(u)在u处可导,则复合函数y=f(ϕ(u))在u处可导,有导数dxdy=dudydxdu
这是一个充分条件。仍然存在在这一点不可导但是复合之后可导的情况。
处理的时候直接带入具体值而不是取极限,因为定理在证明的过程中已经取过极限了。
隐函数求导
参数方程求导
单调性和凹凸性判别
单调性 | 凹凸性 | |
---|---|---|
定义 | 在临域内有定义 | 在区间内连续 |
必要条件 | 一阶可导时导数为零,不可导的驻点当然也有可能 | 二阶可以导时导数为零,不可导的驻点当然也有可能 |
第一充分条件 | 要求该点处的去心临域一阶可导,判断一阶导数的形状(这样就包括了所有可能的极值点:驻点和不可导的点) | 要求该点的去心临域二阶可导,判断二阶导数的形状 |
第二充分条件 | 要求该点处一阶可导为0,二阶导数存在 | 要求该点处二阶可导为0,三阶导数存在 |
第三充分条件 | 要求该点n阶可导,1~n-1都为0 | 要求该点n阶可以导,2~n-1都为0 |
实际上凹凸性和单调性的要求差了一阶;本质上单调性在考察一阶导数的性态,凹凸性考察的是二阶导数。
但是二者定义时的要求不同,一个要求临域有定义即可,一个要求区间内要连续。
凹凸性指的是向y轴的凹凸。