Cholesky分解法

 注:很多人对于一些最基本的理论往往不屑一顾!实际上这种观点是非常错误的,如果你不对这些基础理论有一定理解,是不可能有创新、灵活控制你的分析的!前面已经介绍了行列式计算的程序代码,这种设计方式开发的程序在计算量上差不多是按行列式计算公式来设计程序的计算量的百分之一,特别是对于大型矩阵的行列式计算有更为明显的效果!但是并没有受到各位的重视,甚至都不去验证其是否正确!非常郁闷!计算行列式其实也是计算线性方程组的一种方法——利用Cramer法则,每个未知量的值就是两个行列式的商,但是如果采用这种算法来计算线性方程组,对于大型的线性方程组则计算较慢!所以,下面介绍几种计算线性方程组的方法:

 

根据各种方法的乘除运算比较,Cholesky分解具有相对较小的计算量,大约是Crout分解或LDLT分解方法计算量的一半。对于对称正定矩阵,可以采用Cholesky分解法来求解线性方程组。注:一定要是对称正定矩阵才能使用Cholesky分解法。什么是正定矩阵?去查一下矩阵论的相关资料吧!

图片

图片

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值