Cholesky分解法又叫平方根法,是求解对称正定线性方程组最常用的方法之一。对于一般矩阵,为了消除LU分
解的局限性和误差的过分积累,采用了选主元的方法,但对于对称正定矩阵而言,选主元是不必要的。
定理:若对称正定,则存在一个对角元为正数的下三角矩阵,使得成立。
Cholesky分解的条件(这里针对复数矩阵)
一、Hermitian matrix(埃尔米特矩阵):矩阵中的元素共轭对称(复数域的定义,类比于实数对称矩阵)。
Hermitian意味着对于任意向量x和y,(x*)Ay共轭相等
二、Positive-definite:正定(矩阵域,类比于正实数的一种定义)。正定矩阵A意味着,对于任何向量x,(x^T)Ax总是大于零(复数域是(x*)Ax>0)
Cholesky分解的形式
可记作A = L L*。其中L是下三角矩阵。L*是L的共轭转置矩阵。
可以证明,只要A满足以上两个条件,L是唯一确定的,而且L的对角元素肯定是正数。反过来也对,即存在L把A分解的话,A满足以上两个条件。
如果A是半正定的(semi-definite),也可以分解,不过这时候L就不唯一了。
特别的,如果A是实数对称矩阵,那么L的元素肯定也是实数。
另外,满足以上两个条件意味着A矩阵的特征值都为正实数,因为Ax = lamda * x,
(x*)Ax = lamda * (x*)x > 0, lamda > 0
假设现在要求解线性方程组,其中为对称正定矩阵,那么可通过下面步骤求解
(1)求的Cholesky分解,得到
(2)求解,得到
(3)求解,得到
现在的关键问题是对进行Cholesky分解。假设
通过比较两边的关系,首先由,再由
这样便得到了矩阵的第一列元素,假定已经算出了的前列元素,通过
可以得到
进一步再由
最终得到
这样便通过的前列求出了第列,一直递推下去即可求出,这种方法称为平方根法。
代码:
- #include <iostream>
- #include <string.h>
- #include <stdio.h>
- #include <vector>
- #include <math.h>
-
- using namespace std;
- const int N = 1005;
- typedef double Type;
-
- Type A[N][N], L[N][N];
-
-
- void Cholesky(Type A[][N], Type L[][N], int n)
- {
- for(int k = 0; k < n; k++)
- {
- Type sum = 0;
- for(int i = 0; i < k; i++)
- sum += L[k][i] * L[k][i];
- sum = A[k][k] - sum;
- L[k][k] = sqrt(sum > 0 ? sum : 0);
- for(int i = k + 1; i < n; i++)
- {
- sum = 0;
- for(int j = 0; j < k; j++)
- sum += L[i][j] * L[k][j];
- L[i][k] = (A[i][k] - sum) / L[k][k];
- }
- for(int j = 0; j < k; j++)
- L[j][k] = 0;
- }
- }
-
-
- vector<Type> Solve(Type L[][N], vector<Type> X, int n)
- {
-
- for(int k = 0; k < n; k++)
- {
- for(int i = 0; i < k; i++)
- X[k] -= X[i] * L[k][i];
- X[k] /= L[k][k];
- }
-
- for(int k = n - 1; k >= 0; k--)
- {
- for(int i = k + 1; i < n; i++)
- X[k] -= X[i] * L[i][k];
- X[k] /= L[k][k];
- }
- return X;
- }
-
- void Print(Type L[][N], const vector<Type> B, int n)
- {
- for(int i = 0; i < n; i++)
- {
- for(int j = 0; j < n; j++)
- cout<<L[i][j]<<" ";
- cout<<endl;
- }
- cout<<endl;
- vector<Type> X = Solve(L, B, n);
- vector<Type>::iterator it;
- for(it = X.begin(); it != X.end(); it++)
- cout<<*it<<" ";
- cout<<endl;
- }
-
- int main()
- {
- int n;
- cin>>n;
- memset(L, 0, sizeof(L));
- for(int i = 0; i < n; i++)
- {
- for(int j = 0; j < n; j++)
- cin>>A[i][j];
- }
- vector<Type> B;
- for(int i = 0; i < n; i++)
- {
- Type y;
- cin>>y;
- B.push_back(y);
- }
- Cholesky(A, L, n);
- Print(L, B, n);
- return 0;
- }
-
-
-
-
-
-
-
-
-
用上述的方法需要进行开方,这有可能损失精度和增加运算量,为了避免开方,Cholesky分解有个改进的版本分解。
参考资料:http://class.htu.cn/nla/cha1/sect3.htm
转自:http://blog.csdn.net/acdreamers/article/details/44656847
http://blog.csdn.net/zhouliyang1990/article/details/21952485