错误的路线害死人,2022最全Python爬虫学习路线和学习资料

这是我的Python学习路线,专门针对爬虫的学习路线,涵盖了从入门到入神的4个阶段,有目标,有路线,有作业,也给了学习资源。

在这里插入图片描述

作为一个工程师,总会时不时需要写一些爬虫。

这年头,非工程师都在学习写爬虫。会计,HR,运营,销售都想通过爬虫提高工作效率。

我曾经带队开发过两个大型的爬虫项目:

1. 正品折扣

爬取包括淘宝,京东在内的几十家商城的商品信息,找出正品。同样商品找出最美丽的价格,类似于曾经的一淘。

这个产品虽然没有获得商业上的成功,但在App市场上有几百万的下载量。这样的项目没有大资本,根本玩不转。

在这里插入图片描述

2. 天眼资讯

抓取上百家垂直媒体网站,为某细分行业获取相关资讯,帮助决策者获得最新的政策法规,商机,竞争对手动向等。

现在我们来说Python爬虫学习路线。

1 Python基础

Python编程的基础是必不可少的,这里有两个要点:

1.你不需要等到精通了Python才去实践爬虫。

2.但你确实需要刻意加强系统的Python技能。

在这里插入图片描述

没有广阔的山脊,珠峰不可能那么高;没有深厚的编程基础,爬虫也不会爬的太深!

所以,打好Python基础:

在这里插入图片描述

2 能力阶梯

我把爬虫能力分成了四个等级:

在这里插入图片描述

第1级:能爬弱鸡网站

  • 会爬基本没有防御的网站,会加基本的Header
  • 会翻页,能抓取多页
  • 会基本的文件处理,懂爬虫礼仪

第2级:能爬一般防御网站

  • 能够爬取通过header做防御的网站
  • 能够配合手工,爬取需要登录的网站(cookie)
  • 会爬取前后端分离的网站

第3级:能爬专业防御网站

  • 能爬取有专业反爬措施的网站,如淘宝,优酷等
  • RPA:能自动登录,操作表单,完成工作流程
  • 能自动或半自动破解各种验证码

第4级:能设计大型爬虫系统

  • 能端到端设计和实现大型的爬虫系统
  • 爬取目标,爬取策略,大数据处理
  • 系统的反反爬策略,通用爬虫,AI爬虫

3 学习路线

现在来看看如何一级一级往上爬:

第1级 没有防御的网站

在这里插入图片描述
1. 挑战作业

  • 目标:爬取中关村在线的笑话,会自动翻页。请注意爬虫礼仪,不要爬的太凶。
  • 网址:http://xiaohua.zol.com.cn/detail1/1.html

2. 知识技能

  • requests基本用法,简单的HTTP知识
  • HTML基本知识,beautifulsoup基本用法
  • 爬虫礼仪, 基本的python文件读写

3. 学习资源

  • HTTP https://www.runoob.com/http/http-tutorial.html
  • HTML https://www.w3school.com.cn/
  • beautifulsoup https://www.crummy.com/software/BeautifulSoup/bs4/doc.zh/
  • requests https://requests.readthedocs.io/zh_CN/latest/

第2级 能爬一般学习网站

在这里插入图片描述
1. 挑战作业

  • 目标:完整爬取异步社区书单
  • 网址:http://xiaohua.zol.com.cn/detail1/1.html

2. 知识技能

  • HTTP知识,尤其是HTTP Headers
  • HTML,JSON,JavaScript一般性了解
  • Chrome开发者工具,Postman

3. 学习资源

  • 加深HTTP https://www.runoob.com/http/http-tutorial.html
  • JavaScript,JSON: https://www.w3school.com.cn/
  • Chrome开发者工具 https://www.html.cn/doc/chrome-devtools/
  • Postman https://www.postman.com/downloads/

第3级 自动操作, JS解密,破解各种验证码

在这里插入图片描述
1. 挑战作业

  • 根据自定义规则在淘宝挑选优质商品,能自动登录账号,抓订单信息
  • 网址:https://www.taobao.com

2. 知识技能

  • HTTP POST请求,加深HTML,JS加解密,正则
  • tesserocr, 第三方验证码API
  • selenium, pyautogui, appinium(爬App)

3. 学习资源

  • html, DOM, XPath https://www.w3school.com.cn/
  • tesseract https://github.com/sirfz/tesserocr
  • 常见验证码 https://www.geetest.com/
  • selenium https://selenium-python-zh.readthedocs.io/en/latest/
  • pyautogui https://pyautogui.readthedocs.io/en/latest/

第4级 设计大型爬虫系统

在这里插入图片描述

1. 挑战作业

  • 设计一个系统可以爬取淘宝,京东,拼多多等多个商城
  • 对比同一商品在不同商城的价格

2. 知识技能

  • scrapy, scrapy-redis, scrapyd
  • 数据处理:MySQL, Redis, Elastic Search
  • 代理池,通用爬虫(RE或AI)

3. 学习资源

  • scrapy https://www.osgeo.cn/scrapy/
  • scrapyd https://piaosanlang.gitbooks.io/spiders/content/07day/README7.html
  • MySQL https://www.docs4dev.com/docs/zh/mysql/5.7/reference
  • Redis http://www.redis.cn/
  • 代理池 https://github.com/jhao104/proxy_pool

5 知识体系

把上面所有东西都罗列出来可以分成三部分:

1.蓝色的是核心必备基础,HTTP是爬虫使用的交流语言,HTML, JSON是数据的格式,而DOM, CSS等是解析数据的通用技术。

2.黄色的是通用工具或技术,不管你用Python,还是Java,或者其他编程语言,这些你都用的到。但严格来说,他们不是必备的,都有替代方案。

3.而单纯Python的东西只有上面的绿色部分,相对来说还比较简单。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### 回答1: "3n+1"猜想是一个数学上的问题,即对于一个正整数,如果它是奇数,则将它乘3加1,如果它是偶数,则除以2,重复这个过程直到得到1为止。猜想说明不管从什么数字开始,都会最终得到1。但是,迄今为止尚未证明该猜想是否成立。 ### 回答2: 1001 害死人不偿命的(3n 1)猜想是一种数学猜想,也被称为Collatz猜想。这个猜想提出了以下的问题:对于任意正整数n,无论它是什么样的初始值,经过一系列的操作后,最终都会变成1。 具体的操作规则如下: - 如果n是偶数,则将它除以2; - 如果n是奇数,则将它乘以3再加1; - 将得到的结果再次应用相同的规则; 实际上,这个猜想对于很多非常大的正整数都是成立的,但至今没有找到任何反例来证明它的普遍性。数学家们已经通过计算机模拟和证明,验证了该猜想在很多情况下成立,但没有找到一种通用的方法来证明它对于所有正整数都成立。 这个猜想非常有趣,因为它涉及到了奇偶数的性质,并引发了人们对于数学规律和模式的思考。虽然目前没有人能够证明该猜想的普遍性,但研究该猜想的过程中产生了许多有趣的数学思考和推论。 总的来说,1001 害死人不偿命的(3n 1)猜想是一个仍未解决的有趣数学问题,它激发了人们对于数学规律和模式的探究,并且需要更深入的研究和证明来解开这个谜题。 ### 回答3: 1001 害死人不偿命的(3n 1)猜想是一个数论问题,通常称为“奇怪的猜想”。这个猜想是指对于任意一个正整数n,我们可以使用以下迭代规则得到一个数列: 如果n是奇数,则下一项为3n+1; 如果n是偶数,则下一项为n/2。 迭代进行直到n等于1为止。猜想是无论选取的初始正整数n是多少,最终都会得到1。然而,这个猜想迄今为止还没有被证明。 尽管数学家尝试使用计算机算法验证了大量的n,结果都能够得到1,但这不能证明对于所有的正整数n都成立。同时,也存在一些例外的数,如n = 27,其经过迭代后不会得到1。 对于这个猜想的证明或证伪是一个悬而未决的问题,超过一个世纪以来,许多数学家一直试图解决这个问题。目前还没有找到一个一般性的证明或者反例。 尽管如此,这个猜想激发了数学家们对于数论、迭代算法和数学模式的深入研究。无论最终结果如何,这个猜想都为数学界提供了一个有趣的问题,推动了数学领域的发展。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值