揭秘“让Claude 3.5 像 OpenAI o1 那样思考”的小孩哥神级Prompt是怎么炼成的

最近,网络上继李继刚的神级Prompt之后,又流传了一个新的神级Prompt 2.0,仅凭这段Prompt就能让Claude 3.5像OpenAI o1那样思考。该Prompt作者为17岁高中生,曾获得阿里巴巴全球数学竞赛AI赛道的全球第一 。

整个 Prompt 长达 250 行,接近 1500 个单词,其核心步骤为:

-初步理解:重述问题,理解背景,识别已知和未知要素。

-问题空间探索:分解问题,理解要求和约束条件。

-假设生成:在确定方法前,提出多个假设和视角。

-自然发现过程:像侦探一样逐步深入,形成更深的见解。

-验证和检验:自我质疑,检查推理一致性和分析的完整性。

-错误识别与修正:发现思维中的缺陷并整合新的理解。

-知识综合:关联不同信息,构建连贯的全貌。

-模式识别与分析:寻找信息中的模式,并应用于进一步的探索。

完整的 Prompt 见:https://github.com/richards199999/Thinking-Claude/blob/main/model_instructions.md。

使用方法也很简单,直接 copy,然后输入你的问题即可。

在这里插入图片描述

同时作者还开发了一个浏览器插件,目前正在审核中,过几天应该就能直接安装使用。着急尝鲜的可以直接去Thinking-Claude[1]中以开发者模式安装。

这里有小孩哥的 case 展示:

揭秘

实际上,仔细阅读 Prompt 不难看出,这里有一些小的 trick,让整个过程看起来很酷炫,他通过把拟人化的思考过程包装到标签中,让人感觉有了 O1 思维链的感觉。但实际上者并不是 LLM 的思考过程,而是 LLM 的输出,这和 O1 的推理时计算还是有区别的。

比如,利用这一 trick,你也可以很容易让 kimi 做到这一点。

在这里插入图片描述

但这并不是说这很简单,哪怕知道原理如此,想要写出这样的 Prompt 也并容易的事情。“想要F1夺冠,赛车性能和精湛的车技缺一不可。" 作者精湛的Prompt撰写技巧加上强大Claude模型能力,才让这切变为现实。

未来,应用开发真的就会像现今工具能力过剩的自媒体创作一样,拍一个视频很容易,拍出好视频很难,创意和技巧才是关键!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 关于 Claude 3.5 的 IT 技术相关信息 #### 性能与效率 Claude 3.5 Haiku 被认为是 Anthropic 下一代最快模型的一部分,其性能相较于前代产品有显著提升。具体而言,它的运行成本和速度与 Claude 3 Haiku 类似,但在多项技能上进行了优化改进,在多个智能基准测试中表现优异,甚至超越了 Anthropic 上一代最大规模的模型——Claude 3 Opus[^1]。 此外,Claude 3.5 Sonnet 在处理复杂任务时表现出极高的效率,得益于其双倍的速度提升,这使其在执行高负载计算或实时响应场景下更加游刃有余[^4]。 #### 编码能力 Claude 3.5 Haiku 特别擅长编程相关任务。例如,在 SWE-bench Verified 测试中的得分高达 40.6%,这一成绩不仅领先众多基于开源技术构建的强大模型,还优于早期版本的 Claude 3.5 Sonnet 和 GPT-4o 等知名竞争对手。 #### 自动化功能 除了强大的基础性能外,Claude 3.5 Sonnet 还支持高度自动化的业务流程管理。通过集成先进的自然语言理解和生成技术,它可以轻松完成重复性工作流的设计与部署,并展现出卓越的任务灵活性以及跨领域适应力[^2]。 #### 应用案例:RAG 架构搭建 为了进一步发挥 Claude 3.5 Sonnet 的潜力,可以将其与其他先进技术相结合来解决实际问题。比如利用 LlamaIndex 和 Milvus 数据库共同打造名为 Agentic RAG(Retrieval-Augmented Generation)的知识检索增强型生成框架。这种方法允许用户快速建立一个既能高效查询又能精准反馈信息的企业解决方案[^3]。 ```python from llama_index import VectorStoreIndex, SimpleDirectoryReader import milvus from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.llms.anthropic import AnthropicLLM def build_rag_system(): documents = SimpleDirectoryReader('data').load_data() embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vector_store = milvus.MilvusVectorStore(embedding_function=embeddings_model) index = VectorStoreIndex.from_documents(documents, vector_store=vector_store) llm = AnthropicLLM(model='claude-3.5', max_tokens_to_sample=200) query_engine = index.as_query_engine(llm=llm) response = query_engine.query("What is the capital of France?") print(response) ``` 上述代码片段展示了如何使用 Python 实现一个简单的 RAG 系统原型,其中涉及到了文档加载、向量存储初始化、索引创建以及最终调用大语言模型进行问答交互的过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值