利用Python爬取了所有Python岗位薪资,最赚钱的还是这个岗位

本文通过分析拉勾网上10个Python相关岗位的职位信息,揭示了不同岗位的平均薪资、学历及工作经验要求。Python爬虫、数据分析、后端等岗位普遍要求本科及以上学历,工作经验在1-5年,平均薪资多集中在10k-30k。其中,数据挖掘和机器学习岗位对学历和经验要求更高,薪资也更优厚。全栈开发和架构师则需要广泛的技术知识和多年经验,薪资可达30k以上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文以Python爬虫、数据分析、后端、数据挖掘、全栈开发、运维开发、高级开发工程师、大数据、机器学习、架构师这10个岗位,从拉勾网上爬取了相应的职位信息和任职要求,并通过数据分析可视化,直观地展示了这10个职位的平均薪资和学历、工作经验要求。

在这里插入图片描述

爬虫准备

1、先获取薪资和学历、工作经验要求

由于拉勾网数据加载是动态加载的,需要我们分析。分析方法如下:

在这里插入图片描述

我们发现网页内容是通过post请求得到的,返回数据是json格式,那我们直接拿到json数据即可。

我们只需要薪资和学历、工作经验还有单个招聘信息,返回json数据字典中对应的英文为:positionId,salary, education, workYear(positionId为单个招聘信息详情页面编号)。相关操作代码如下:

文件存储:

在这里插入图片描述

基本数据获取:

在这里插入图片描述
运行结果:

在这里插入图片描述

2、根据获取到的positionId来访问招聘信息详细页面

根据positionId还原访问链接:

在这里插入图片描述

访问招聘信息详情页面,获取职位描述(岗位职责和岗位要求)并清理数据:

在这里插入图片描述

运行结果:

在这里插入图片描述

3.四种图可视化数据+数据清理方式

矩形树图:

# 1.矩形树图可视化学历要求
from pyecharts import TreeMap
education_table = {}
for x in education:
 education_table[x] = education.count(x)
key = []
values = []
for k,v in education_table.items():
 key.append(k)
 values.append(v)
data = []
for i in range(len(key)) :
 dict_01 = {"value": 40, "name": "我是A"}
 dict_01["value"] = values[i]
 dict_01["name"] = key[i]
 data.append(dict_01)
tree_map = TreeMap("矩形树图", width=1200, height=600)
tree_map.add("学历要求",data, is_label_show=True, label_pos='inside')

玫瑰饼图:

# 2.玫瑰饼图可视化薪资
import re
import math
'''
# 薪水分类
parameter : str_01--字符串原格式:20k-30k
returned value : (a0+b0)/2 --- 解析后变成数字求中间值:25.0
'''
def assort_salary(str_01):
 reg_str01 = "(\d+)"
 res_01 = re.findall(reg_str01, str_01)
 if len(res_01) == 2:
 a0 = int(res_01[0])
 b0 = int(res_01[1])
 else :
 a0 = int(res_01[0])
 b0 = int(res_01[0])
 return (a0+b0)/2
from pyecharts import Pie
salary_table = {}
for x in salary:
 salary_table[x] = salary.count(x)
key = ['5k以下','5k-10k','10k-20k','20k-30k','30k-40k','40k以上']
a0,b0,c0,d0,e0,f0=[0,0,0,0,0,0]
for k,v in salary_table.items():
 ave_salary = math.ceil(assort_salary(k))
 print(ave_salary)
 if ave_salary < 5:
 a0 = a0 + v
 elif ave_salary in range(5,10):
 b0 = b0 +v
 elif ave_salary in range(10,20):
 c0 = c0 +v
 elif ave_salary in range(20,30):
 d0 = d0 +v
 elif ave_salary in range(30,40):
 e0 = e0 +v
 else :
 f0 = f0 + v
values = [a0,b0,c0,d0,e0,f0]
pie = Pie("薪资玫瑰图", title_pos='center', width=900)
pie.add("salary",key,values,center=[40, 50],is_random=True,radius=[30, 75],rosetype="area",is_legend_show=False,is_label_show=True)

普通柱状图:

# 3.工作经验要求柱状图可视化
from pyecharts import Bar
workYear_table = {}
for x in workYear:
 workYear_table[x] = workYear.count(x)
key = []
values = []
for k,v in workYear_table.items():
 key.append(k)
 values.append(v)
bar = Bar("柱状图")
bar.add("workYear", key, values, is_stack=True,center= (40,60))

词云图:

import jieba
from pyecharts import WordCloud
import pandas as pd
import re,numpy
stopwords_path = 'H:\PyCoding\Lagou_analysis\stopwords.txt'
def read_txt():
 with open("G:\lagou\Content\\ywkf_requirement.txt",encoding='gbk') as file:
 text = file.read()
 content = text
 # 去除所有评论里多余的字符
 content = re.sub('[,,。. \r\n]', '', content)
 segment = jieba.lcut(content)
 words_df = pd.DataFrame({'segment': segment})
 # quoting=3 表示stopwords.txt里的内容全部不引用
 stopwords = pd.read_csv(stopwords_path, index_col=False,quoting=3, sep="\t", names=['stopword'], encoding='utf-8')
 words_df = words_df[~words_df.segment.isin(stopwords.stopword)]
 words_stat = words_df.groupby(by=['segment'])['segment'].agg({"计数": numpy.size})
 words_stat = words_stat.reset_index().sort_values(by=["计数"], ascending=False)
 test = words_stat.head(200).values
 codes = [test[i][0] for i in range(0, len(test))]
 counts = [test[i][1] for i in range(0, len(test))]
 wordcloud = WordCloud(width=1300, height=620)
 wordcloud.add("必须技能", codes, counts, word_size_range=[20, 100])
 wordcloud.render("H:\PyCoding\Lagou_analysis\cloud_pit\ywkf_bxjn.html")

Python爬虫岗位

学历要求:

在这里插入图片描述

工作月薪:

在这里插入图片描述

工作经验要求:

在这里插入图片描述

爬虫技能:

在这里插入图片描述

关键词解析:

  • 学历:本科
  • 工作月薪:10k-30k
  • 工作经验:1-5年
  • 技能:分布式、多线程、框架、Scrapy、算法、数据结构、数据库

综合:爬虫这个岗位在学历要求上比较放松,大多数为本科即可,比较适合想转业的老哥小姐姐,学起来也不会特别难。而且薪资待遇上也还算比较优厚,基本在10k以上。不过唯一对工作经验要求还是比较高的,有近一半的企业要求工作经验要达到3年以上。

Python数据分析岗位

学历要求
在这里插入图片描述

工作月薪

在这里插入图片描述

工作经验要求

在这里插入图片描述

数据分析技能

在这里插入图片描述

关键词解析:

  • 学历:本科(硕士比例有所增高)
  • 工作月薪:10k-30k
  • 工作经验:1-5年
  • 技能:SAS、SPSS、Hadoop、Hive、数据库、Excel、统计学、算法

综合:数据分析这个岗位在学历要求上比爬虫要求稍微高一些,硕士比例有所提升,专业知识上有一定要求。薪资待遇上也还算比较优厚,基本在10k以上,同时薪资在30k-40k的比例也有所上升。对工作经验要求还是比较高,大部分的企业要求工作经验要达到3年以上。

Python后端岗位

学历要求

在这里插入图片描述

工作月薪

在这里插入图片描述

工作经验要求

在这里插入图片描述

后端技能

在这里插入图片描述

关键词解析:

  • 学历:本科
  • 工作月薪:10k-30k
  • 工作经验:3-5年
  • 技能:Flask、Django、Tornado、Linux、MySql、Redis、MongoDB、TCP/IP、数学(哈哈)

综合:web后端这个岗位对学历要求不高,但专业知识上有很大要求,得会Linux操作系统基本操作、三大主流数据库的使用、以及三大基本web框架的使用等计算机相关知识,总体来说难道还是比较大。薪资待遇上也比较优厚,基本在10k以上,同时薪资在30k-40k的比例也有近20%。对工作经验要求还是比较高,大部分的企业要求工作经验要达到3年以上。

Python数据挖掘岗位

学历要求

在这里插入图片描述

工作月薪

在这里插入图片描述

工作经验要求

在这里插入图片描述

数据挖掘技能

在这里插入图片描述

关键词解析:

  • 学历:本科(硕士)
  • 工作月薪:20k-40k
  • 工作经验:3-5年
  • 技能:学历(hhh)、Hadoop、Spark、MapReduce、Scala、Hive、聚类、决策树、GBDT、算法

综合:数据挖掘这个岗位,在学历要求是最高的,虽然还是本科居多,但硕士比例明显增加,还有公司要求博士学历。在专业知识上也有很大要求,得会Linux操作系统基本操作、大数据框架Hadoop、Spark以及数据仓库Hive的使用等计算机相关知识,总体来说难道还是比较大。薪资待遇上特别优厚,基本在20k以上,薪资在30k-40k的比例也有近40%,对工作经验要求还是比较高,大部分的企业要求工作经验要达到3年以上。

Python全栈开发岗位

学历要求

在这里插入图片描述

工作月薪

在这里插入图片描述

工作经验要求

在这里插入图片描述

全栈开发技能

在这里插入图片描述

关键词解析:

  • 学历:本科
  • 工作月薪:10k-30k
  • 工作经验:3-5年
  • 技能:测试、运维、管理、开发、数据结构、算法、接口、虚拟化、前端

综合:全栈开发这个岗位什么都要懂些,什么都要学些,在学历要求上并不太高,本科学历即可,在专业知识上就不用说了,各个方面都得懂,还得理解运用。薪资待遇上也还可以,基本在10k以上,薪资在30k-40k的比例也有近20%。对工作经验要求还是比较高,大部分的企业要求工作经验要达到3年以上。总体来说,就我个人而言会觉得全栈是个吃力多薪水少的岗位。

Python运维开发岗位

学历要求

在这里插入图片描述

工作月薪

在这里插入图片描述

工作经验要求

在这里插入图片描述
运维开发技能

在这里插入图片描述

关键词解析:

  • 学历:本科
  • 工作月薪:10k-30k
  • 工作经验:3-5年
  • 技能:SVN、Git、Linux、框架、shell编程、mysql,redis,ansible、前端框架

综合:运维开发这个岗位在学历要求上不高,除开占一大半的本科,就是专科了。工作经验上还是有一些要求,大多数要求有3-5年工作经验。从工资上看的话,不高也不低,20k以上也占有62%左右。要学习的东西也比较多,前端、后端、数据库、操作系统等等。

Python高级开发工程师岗位

学历要求

在这里插入图片描述

工作月薪

在这里插入图片描述

工作经验要求

在这里插入图片描述

高级开发工程师技能

在这里插入图片描述

关键词解析:

  • 学历:本科
  • 工作月薪:20k左右
  • 工作经验:3-5年
  • 技能:WEB后端、MySQL、MongoDB、Redis、Linux系统(CentOS)、CI/CD 工具、GitHub

综合:高级开发工程师这个岗位在学历要求上与运维开发差不多,薪资也相差不大,22%以上的企业开出了30k以上的薪资,65%左右企业给出20k以上的薪资。当然,对工作经验上还是要求较高,有近一半的企业要求工作经验要达到3年以上。

Python大数据岗位

学历要求

在这里插入图片描述

工作月薪

在这里插入图片描述

工作经验要求

在这里插入图片描述

大数据技能

在这里插入图片描述

关键词解析:

  • 学历:本科(硕士也占比很大)
  • 工作月薪:30k以上
  • 工作经验:3-5年
  • 技能:前端开发、 MySQL、Mongo、Redis、Git 、Flask、Celery、Hadoop/HBase/Spark/Hive、Nginx

综合:现在是大数据时代,大数据这个岗位也是相当火热,在学历要求上几乎与运维开发一模一样。当然,可能数据上出现了巧合,本科居多,工作经验上1-5年占据一大半,薪资上也基本上在20k以上,该岗位薪资在20k以上的企业占了55%左右。

Python机器学习岗位

学历要求

在这里插入图片描述

工作月薪

在这里插入图片描述

工作经验要求

在这里插入图片描述

机器学习技能

在这里插入图片描述

关键词解析:

  • 学历:本科(硕士也占比很大)
  • 工作月薪:30k以上
  • 工作经验:3-5年
  • 技能:Machine Learning,Data Mining,Algorithm 研发,算法,Linux,决策树,TF,Spark+MLlib,Cafe

综合:机器学习这个岗位在学历要求上比较严格,虽然看起来是本科居多,但对于刚毕业或毕业不久的同学,如果只是个本科,应聘还是很有难度的。当然机器学习岗位薪资特高,60%在30k以上,近90%在20k以上,97%在10k以上。除开对学历要求比较高外,对工作经验要求也比较高,有近一半的企业要求工作经验要达到3年以上。

Python架构师岗位

在这里插入图片描述

架构师技能

在这里插入图片描述

关键词解析:

  • 学历:本科
  • 工作月薪:30k以上
  • 工作经验:5-10年
  • 技能:Flask,Django,MySQL,Redis,MongoDB,Hadoop,Hive,Spark,ElasticSearch,Pandas,Spark/MR,Kafka/rabitmq

综合:架构师这个岗位单从学历上看不出什么来,但在薪资上几乎与机器学习一样,甚至比机器学习还要高,机器学习中月薪40k以上的占23.56%,架构师中月薪40k以上的占30.67%。在学历要求上比机器学习要略低,本科居多,但在工作经验上一半以上的企业要求工作经验在5-10年。在必要技能上也要求特别严格,比之前说过的全栈开发师有过之而无不及。

看着这月薪,我是超级想去了,你呢?

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值