自己只能跑llama3-8b模型,告诉你一个免费使用llama3-70b的方法

想体验一下llama3-70b的模型的话,需要很大的计算资源,且要求极高的内存。llama3-8b的模型约4.7G ,而llama3-70b的模型约40G,若想在自己的电脑上面加载llama3-70b的模型,可想而知需要多少的内存,多少的显卡资源。

在这里插入图片描述
Meta llama 3

Llama 3是Meta AI开源的第三代Llama系列模型,其新的 8B 和 70B 参数 Llama 3 模型在Llama 2的基础上,实现了更大性能的提升。由于预训练和训练后的技术改进,其Llama 3模型是当今 8B 和 70B 参数规模的最佳模型。Llama 3模型的改进大大降低了错误拒绝率,改善了一致性,并增加了模型响应的多样性。Llama 3模型在推理、代码生成和指令跟踪等功能也得到了极大的改善。

在这里插入图片描述
Nvidia

无论是大语言模型,还是文生视频,文生图模型,都需要大量的显卡资源,而Nvidia的显卡一定是研发团队考虑的重点显卡配置。随着Llama系列开源以来,而Nvidia也拿出了自己的诚意,在自己官方网站上线了Llama系列的模型,不仅搭建了完美的UI界面供大家使用,而且还是免费的使用资源。

在这里插入图片描述
llama3-70b Nvidia

在Nvidia官方界面,可以很容易的使用llama3-70b模型。界面提供2种使用llama3-70b的方式,一是可以直接在界面聊天框中输入内容,跟llama3-70b模型聊天,另外要给是使用Nvidia提供的API接口。

在这里插入图片描述
llama3-70b模型

llama3-70b模型在Nvidia网站上面跑的速度还是极快的,而在自己电脑上面跑llama3-8b的模型有时还出现卡顿的现象,特别是一些稍微复杂的问题。

在这里插入图片描述
llama3 70b 中文能力

让他说中文,感觉回复的是英文,然后再翻译成中文,但是回复的内容中,其中文还是占少数,主要是英文为主。这在介绍llama3时也有介绍,其官方目前的训练数据还是以英文为主。

在这里插入图片描述
llama3 70b 编程能力

不得不说,各大模型对编码的处理还是很符合人意的,毕竟编程语言是固定的,且都是英文的形式,训练数据也可以直接用GitHub的数据。

在这里插入图片描述
llama3 70b 上下文记忆能力

而在Nvidia官网上使用的llama3 70b模型也支持上下文记忆,模型可以记录以前的聊天记录,若模型回复英文的答案,可以让模型进行翻译,其翻译效果还是很强大。

英文:  
Here is a Python implementation of the Bubble Sort algorithm:  
def bubble_sort(arr):  
    n = len(arr)  
    for i in range(n-1):  
        for j in range(n-i-1):  
            if arr[j] > arr[j+1]:  
                arr[j], arr[j+1] = arr[j+1], arr[j]  
    return arr  
Here's an explanation of how the algorithm works:  
The outer loop iterates n-1 times, where n is the length of the input array.  
The inner loop iterates from the first element to the n-i-1-th element.  
In each iteration of the inner loop, we compare the current element with the next element. If the current element is greater than the next element, we swap them.  
After each iteration of the outer loop, the largest element in the unsorted portion of the array "bubbles" up to the end of the sorted portion.  
The algorithm repeats steps 2-4 until the entire array is sorted.  
Here's an example usage:  
arr = [5, 2, 8, 3, 1, 6, 4]  
arr = bubble_sort(arr)  
print(arr)  #[1, 2, 3, 4, 5, 6, 8]  
Note that Bubble Sort has a time complexity of O(n^2), which makes it less efficient than other sorting algorithms like QuickSort or MergeSort for large datasets. However, it's still a simple and easy-to-understand algorithm that can be useful for small datasets or educational purposes.   
中文翻译:  
以下是 Python 实现的冒泡排序算法:  
def bubble_sort(arr):  
    n = len(arr)  
    for i in range(n-1):  
        for j in range(n-i-1):  
            if arr[j] > arr[j+1]:  
                arr[j], arr[j+1] = arr[j+1], arr[j]  
    return arr  
以下是算法的工作原理:  
外层循环迭代 n-1 次,其中 n 是输入数组的长度。  
内层循环从第一个元素迭代到 n-i-1 个元素。  
在内层循环的每次迭代中,我们比较当前元素与下一个元素。如果当前元素大于下一个元素,我们交换它们。  
在每次外层循环迭代后,未排序部分的最大元素“冒泡”到已排序部分的末尾。  
算法重复步骤 2-4,直到整个数组被排序。  
以下是一个示例用法:  
arr = [5, 2, 8, 3, 1, 6, 4]  
arr = bubble_sort(arr)  
print(arr)  #[1, 2, 3, 4, 5, 6, 8]  
注意冒泡排序的时间复杂度为 O(n^2),这使得它对于大型数据集来说不如快速排序或归并排序那样高效。然而,它仍然是一个简单易懂的算法,对于小型数据集或教育目的来说非常有用。

在这里插入图片描述
代码实现llama3

当然,也可以使用官方提供的API搭建自己的聊天机器人,只需申请API key,输入如下代码,并把API key替换成自己的key即可。

from openai import OpenAI  
client = OpenAI(  
  base_url = "https://integrate.api.nvidia.com/v1",  
  api_key = "$API_KEY_REQUIRED_IF_EXECUTING_OUTSIDE_NGC")  
completion = client.chat.completions.create(  
  model="meta/llama3-70b-instruct",  
  messages=[{"role":"user","content":"请翻译以上的内容,翻译成中文"}],  
  temperature=0.5,  
  top_p=0.7,  
  max_tokens=1024,  
  stream=True)  
for chunk in completion:  
  if chunk.choices[0].delta.content is not None:  
    print(chunk.choices[0].delta.content, end="")
`https://build.nvidia.com/meta/llama3-70b   Inference:   Engine: Triton   Test Hardware:   `

`H100-80G`

`   `

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值