从关键词匹配到知识理解:微软GraphRAG开启智能检索新时代

TLDR

微软研究院开发了一种名为 GraphRAG 的全新检索增强生成 (RAG) 技术,利用大型语言模型 (LLM) 生成的知识图谱来分析复杂信息,显著提高了在私有数据集上进行问答和主题发现的性能,优于传统的基于向量相似性的 RAG 方法。GraphRAG 通过结构化的知识表示、实体和关系提取、层次聚类和社区摘要等关键特性,能够提供更准确、上下文相关且全面的答案,尤其适用于处理复杂信息或大型数据集。

引言:信息过载时代的检索困境

你是否曾为在浩如烟海的信息中寻找答案而感到frustrated?在这个信息爆炸的时代,我们每天都被海量的数据包围,如何快速、精准地获取所需信息成为了一个universal的难题。传统的搜索引擎依赖于关键词匹配,常常返回大量irrelevant的结果,用户不得不花费大量时间和精力进行筛选和辨别,甚至错过真正有价值的信息。

面对日益增长的信息需求和传统检索方式的局限性,人们迫切需要更智能、更高效的信息检索工具。而人工智能的最新进展,为我们带来了新的希望。

LLM与RAG:人工智能如何改变信息检索

近年来,人工智能,特别是自然语言处理领域的飞速发展,为信息检索带来了革命性的变化。其中,大型语言模型 (LLM) 凭借其强大的文本理解和生成能力,逐渐成为了构建新一代智能检索工具的核心驱动力。LLM 能够理解自然语言,并根据海量数据进行训练,从而具备强大的知识储备和推理能力。

检索增强生成 (RAG) 技术的出现,则进一步释放了 LLM 在信息检索领域的潜力。RAG 技术将 LLM 与外部知识库相结合,允许 LLM 在生成答案时参考更comprehensive的信息,从而显著提高其问答能力。

然而,传统的 RAG 方法主要依赖于向量相似性搜索,在处理需要复杂推理和信息整合的查询时往往力不从心。例如,当用户的问题需要整合多个文档的信息,或者需要进行多层次推理才能得到答案时,传统的 RAG 方法 often 无法给出令人满意的结果。

微软GraphRAG:知识图谱赋能智能检索

为了解决传统 RAG 方法的局限性,微软研究院开发了一种名为 GraphRAG 的全新 RAG 技术。GraphRAG 的核心创新在于利用 LLM 生成知识图谱,将非结构化信息转化为结构化的知识表示,从而赋予 LLM 更强大的推理和问答能力。

GraphRAG 的核心优势

GraphRAG 之所以能够克服传统 RAG 的局限性,主要得益于以下几个方面的创新:

  1. 结构化的知识表示: GraphRAG 使用知识图谱来表示信息,将文本数据转化为结构化的图谱形式,其中节点代表实体,边代表实体之间的关系。这种结构化的知识表示方式,使得信息之间的关系更加清晰明确,便于 LLM 进行推理和分析。

  2. 自动化的知识抽取: GraphRAG 利用 LLM 自动从文本数据中抽取实体、关系和关键陈述等信息,无需人工构建知识图谱,大大降低了知识图谱构建的成本和难度。

  3. 层次化的信息组织: GraphRAG 使用层次化的社区结构来组织信息,将具有相似语义的实体聚集在一起,形成不同的社区,并生成社区摘要,帮助用户快速了解每个社区的关键信息。这种层次化的信息组织方式,使得 LLM 能够更好地理解信息的上下文和语义关系。

  4. 灵活的查询方式: GraphRAG 支持全局搜索和本地搜索两种查询模式。全局搜索利用社区摘要推理关于整体性问题,而本地搜索则通过探索邻近概念和相关概念来处理特定实体查询。

  5. 优越的性能表现: GraphRAG 在处理复杂信息和私有数据集方面表现优于传统的 RAG 方法,尤其是在以下情况下:

  • 连接不同的信息片段。

  • 全面理解大型数据集上的汇总语义概念。

  • 从长文档中滤除噪声。

  • 根据用户上下文和查询中捕获的实体对结果进行过滤和提升。

GraphRAG 的工作原理

GraphRAG 的架构主要包含两个核心模块:索引器 (Indexer) 和 **查询引擎 (Query Engine)**。

索引器

索引器负责将非结构化文本数据转化为结构化的知识图谱,并将其存储到数据库中,其主要流程如下:

  1. 文本切分: 将输入的文本数据按照一定的规则切分成多个文本单元 (Text Unit),每个文本单元通常包含一个或多个完整的句子。

  2. 实体和关系抽取: 利用 LLM 从文本单元中抽取实体、关系和关键陈述等信息。例如,从句子 “OpenAI 开发了 ChatGPT” 中,可以抽取出实体 “OpenAI” 和 “ChatGPT”,以及关系 “开发”。

  3. 知识图谱构建: 将抽取出的实体和关系信息构建成图结构的知识图谱,其中节点代表实体,边代表关系。

  4. 社区检测: 利用图算法(例如,层次化 Leiden 技术)对知识图谱进行社区检测,将具有相似语义的实体聚集在一起,形成不同的社区。

    在这里插入图片描述

  5. 社区概括: 为每个社区生成一个概括性的描述,用于概括该社区的主题和关键信息。

  6. 向量化: 利用 LLM 将实体、关系、社区概括等信息转化为向量表示,用于后续的语义搜索。

  7. 存储: 将构建好的知识图谱、社区信息和向量表示等数据存储到数据库中,供查询引擎使用。

    Figure 1: An LLM-generated knowledge graph built using GPT-4 Turbo.

查询引擎

查询引擎负责接收用户查询,并在知识图谱中检索相关信息,最终生成答案。其主要流程如下:

  1. 查询解析: 将用户查询转化为知识图谱上的查询语句。

  2. 图遍历: 在知识图谱上进行遍历,寻找与查询相关的实体、关系和路径。

  3. 信息整合: 将检索到的信息进行整合,形成 LLM 生成答案的上下文信息。

  4. 答案生成: 利用 LLM 根据上下文信息生成最终的答案。

案例分析:GraphRAG如何解决真实世界的信息挑战

为了更好地理解 GraphRAG 的优势,我们来看一个具体的例子。假设我们有一个包含大量医学研究文献的数据库,我们想要查询 “二甲双胍除了治疗糖尿病,还有什么其他的用途?” 使用传统的 RAG 方法,由于文本中可能仅仅提到二甲双胍在治疗糖尿病方面的应用,而没有明确列出其所有用途,因此很难找到满意的答案。

而 GraphRAG 则可以利用知识图谱,找到 “二甲双胍” 这个实体,并查询与其相关的 “治疗”、“应用” 等关系,并通过图谱的遍历和推理,发现二甲双胍与多囊卵巢综合征 (PCOS)、癌症、抗衰老等其他疾病或领域存在关联,从而给出更全面的答案,例如:“除了治疗糖尿病外,二甲双胍还被用于治疗多囊卵巢综合征、某些类型的癌症,并正在研究其在抗衰老方面的潜在应用.”

Baseline RAGGraphRAG
二甲双胍主要用于治疗 2 型糖尿病。除了治疗 2 型糖尿病外,二甲双胍还被用于治疗多囊卵巢综合征 (PCOS)。研究表明,二甲双胍可以改善 PCOS 患者的胰岛素敏感性,降低雄激素水平,并恢复排卵。此外,一些研究表明二甲双胍可能对某些类型的癌症,例如乳腺癌、结肠癌和前列腺癌有一定的治疗效果。目前,科学家们还在研究二甲双胍在抗衰老方面的潜在应用。

从这个例子可以看出, GraphRAG 能够更好地理解用户查询背后的意图,并利用知识图谱进行推理和信息整合,从而给出更 accurate 和 comprehensive 的答案。

GraphRAG的应用前景:构建更智能的信息世界

GraphRAG 作为一种新兴的 RAG 技术,在信息检索、知识管理、智能问答等领域拥有巨大的应用潜力,有望改变我们获取和利用信息的方式。

  • 企业知识管理: GraphRAG 可以帮助企业构建内部知识图谱,实现对企业内部文档、邮件、聊天记录等信息的语义搜索和智能问答,从而提高员工的工作效率和企业的知识管理水平。

  • 智能搜索引擎: GraphRAG 可以增强搜索引擎的语义理解能力,返回更精准的搜索结果,并提供更丰富的知识卡片和关联信息,提升用户的搜索体验。

  • 个性化推荐: GraphRAG 可以根据用户的兴趣和需求,推荐更 relevant 的信息和服务,例如个性化的学习资源、商品推荐、新闻资讯等。

总结和展望:迈向知识理解驱动的未来检索

GraphRAG 的出现,标志着信息检索从传统的关键词匹配向基于知识理解的范式转变。它让我们看到了 LLM 与知识图谱结合的巨大潜力,也为构建更智能的信息世界带来了新的希望。

尽管 GraphRAG 在处理复杂信息方面展现出强大的能力,但其本身也面临着一些挑战。例如,如何高效地构建和维护大规模的知识图谱,如何处理多模态数据,如何进一步提升 GraphRAG 的推理和问答能力等。

未来, GraphRAG 将在以下方向继续发展:

  • 多模态知识图谱的构建和应用: 将文本、图像、视频等多模态数据整合到知识图谱中,实现更 comprehensive 的知识表示和推理。

  • 更强大的知识推理和问答能力: 探索更先进的图神经网络和推理算法,提升 GraphRAG 在复杂场景下的知识推理和问答能力。

  • 与其他人工智能技术的融合: 将 GraphRAG 与其他人工智能技术相结合,例如机器学习、自然语言处理等,构建更 intelligent 的信息生态系统,为用户提供更便捷、高效、智能的信息服务。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 10
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值