小伙伴们想象一下,如果你有一支神笔,能在几秒内勾勒出一本书的轮廓,甚至是一个引人入胜的故事,那该有多酷?
今天开源君就和大家分享一款超级酷的开源项目 - Infinite Bookshelf
,它基于Groq平台和Llama3模型,将创作梦想变为现实。在这个信息爆炸的时代,这个项目仿佛是给创意插上翅膀,让创作变得前所未有的简单和高效。
项目简介
Infinite Bookshelf
,前身为Groqbook,是一个基于Groq和Llama3的流式应用程序,它可以从一个简单的提示生成书籍。这个项目特别适合非小说类书籍的创作,并且能够在短时间内生成每一章的内容。它主要使用Llama3-8b和Llama3-70b两种模型,大模型用来构建书籍结构,小模型用来生成具体内容。
想象一下,只需要一个章节标题,甚至是一个简单的句子,它就能在几秒内为你生成一章内容丰富、结构合理的文本,是不是已经迫不及待想要试试了?
目前在Github上面收获了1.1K star!
性能特色
-
闪电生成:多亏了Groq平台的速度优化,infinite-bookshelf生成内容的速度令人咋舌。据说,它能在短短几秒钟内生成数千个英文单词,这速度,简直比打字机还快上好几倍!
-
双模并驱:它巧妙地结合了Llama3-8b和Llama3-70b两种模型,大模型负责构建书籍的整体框架,小模型则专注于填充细节内容,确保速度与质量的双重保障。
-
Markdown风格:生成的书籍内容采用Markdown格式,不仅看起来整洁美观,还支持表格、代码等多种元素,让你的书籍看起来更加专业。
-
灵活下载:最重要的是,它还允许你下载包含整本书籍内容的文本文件,让你随时随地都能进行阅读和修改,非常方便。
快速使用
使用Infinite Bookshelf非常简单。你可以直接访问Infinite Bookshelf的在线版本
https://infinite.benjamin.sh/
或者按照以下步骤在本地运行:
1、设置Groq API密钥:
export GROQ_API_KEY="你的Groq API密钥"
2、设置虚拟环境并安装依赖:
source venv/bin/activate # Bash venv\Scripts\activate.bat # Windows pip3 install -r requirements.txt
3、运行Streamlit应用:
python3 -m streamlit run main.py
项目展示
只需要输入主题,Infinite Bookshelf就会生成一本包含相关章节和内容的书。
还可以将生成的书下载。
Infinite Bookshelf
是一个强大的工具,它展示了AI在内容创作方面的潜力。虽然目前它更适合非小说类书籍的生成,但未来的更新将使其能够生成高质量的小说书籍。这是一个值得关注和尝试的项目,无论你是作家、学生还是技术爱好者。
更多细节功能,感兴趣的可以到项目地址查看:
项目地址:
https://github.com/Bklieger/infinite-bookshelf
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。