安装 Dify 并集成 Ollama 和 Xinference

本文介绍了通过 Docker 安装 Dify,然后集成 Ollama 和 XInference,并利用 Dify 快速搭建一个基于知识库问答的应用。

  • 一、Dify 简介

  • 二、Dify 安装

  • 三、Dify 添加Ollama模型问答

  • 四、Dify 基于知识库问答

  • 五、文档链接

一、Dify 简介

Dify 是一款开源的大语言模型(LLM)应用开发平台,旨在帮助开发者快速构建和部署生成式 AI 应用。以下是 Dify 的主要功能和特点 [1]:

  • 融合 Backend as Service 和 LLMOps 理念:Dify 将后端即服务(Backend as Service)和 LLMOps 的理念结合,使开发者能够快速搭建生产级的生成式 AI 应用。

  • 支持多种模型:Dify 支持数百种专有和开源的 LLM 模型,包括 GPT、Mistral、Llama3 等,能够无缝集成来自多家推理提供商和自托管解决方案的模型。

  • 直观的 Prompt 编排界面:Dify 提供了一个直观的 Prompt IDE,用于编写提示、比较模型性能,并向基于聊天的应用程序添加语音转换等附加功能。

  • 高质量的 RAG 引擎:Dify 拥有广泛的 RAG 功能,涵盖从文档摄取到检索的一切,并支持从 PDF、PPT 等常见文档格式中提取文本。

  • 集成 Agent 框架:用户可以基于 LLM 函数调用或 ReAct 定义代理,并为代理添加预构建或自定义工具。Dify 提供了 50 多种内置工具,如 Google 搜索、DELL·E、Stable Diffusion 和 WolframAlpha。

  • 灵活的流程编排:Dify 提供了一个强大的可视化画布,用于构建和测试强大的 AI 工作流,使开发者可以直观地设计和优化他们的 AI 流程。

  • 全面的监控和分析工具:Dify 提供了监控和分析应用日志和性能的工具,开发者可以根据生产数据和注释不断改进提示、数据集和模型。

  • 后端即服务:Dify 的所有功能都附带相应的 API,因此可以轻松将 Dify 集成到您自己的业务逻辑中。

二、Dify 安装

拷贝 Dify Github代码到本地 [2]。

git clone https://github.com/langgenius/dify.git   

进入 dify 源代码的 docker 目录,拷贝环境变量。

cd dify/docker   cp .env.example .env   

通过docker compose安装应用。

docker compose up -d   

进入ollama容器,启动qwen2:7b模型。

root@ip-172-31-30-167:~/dify/docker# docker pull ollama/ollama   root@ip-172-31-83-158:~/dify/docker# docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama --restart always -e OLLAMA_KEEP_ALIVE=-1 ollama/ollama   root@ip-172-31-83-158:~/dify/docker# docker exec -it ollama bash   root@b094349fc98c:/# ollama run qwen2:7b   

三、Dify 添加Ollama模型问答

通过EC2的公网IP地址加上80端口,登录Dify主页,创建管理账户。

通过管理员账号登录。

点击用户-设置。

添加Ollama模型。

添加qwen2:7b模型,因为Ollama是在本机启动,所以设置URL为本地IP地址,端口为114341

qwen2-7b-instruct 利用YARN(一种增强模型长度外推的技术)支持 131,072 tokens上下文,为了保障正常使用和正常输出,建议API限定用户输入为 128,000 ,输出最大 6,144。[3]

点击 工作室-创建空白应用

创建“聊天助手”类型的应用,设置应用名称为Qwen2-7B,点击创建。

为应用设置提示词"你是一个人工智能助手",可以和Qwen2:7B进行对话测试,这里是和大模型本身进行对话,没有引入外部的知识库,后续会引入知识库比较回答的结果。

四、Dify 基于知识库问答

添加Xorbits Inference提供的模型。

添加Text Embedding,即文本嵌入模型,模型的名称为bge-m3,服务器URL为http://172.31.30.167:9997(这里是本机的IP,也可以安装在其他机器,网络和端口可达即可),已经提前在本机上启动了XInference,并且启动了bge-m3模型(参考上一篇文章)。

添加Rerank,即重排模型,模型的名称为bge-reraker-v2-m3,服务器URL为http://172.31.30.167:9997(这里是本机的IP,也可以安装在其他机器,网络和端口可达即可),已经提前在本机上启动了XInference,并且启动了bge-reraker-v2-m3模型(参考上一篇文章)。

查看系统默认设置。

点击“知识库”-“导入已有文本”-“上传文本文件”-选择《促进和规范数据跨境流动规定》的文档。

导入成功后,设置文本检索方式,开启Rerank模型,选择bge-reranker-v2-m3模型,开启默认的Score阈值为0.5(即文本匹配度低于0.5分时,不会召回,不会添加到大模型的上下文中)。

在之前的聊天应用中,添加上面创建的知识库,重新询问大模型相同的问题,可以看到模型结合知识库进行了回答。

可以点击“Prompt日志”,查看日志文件,可以查看系统提示词,将匹配的知识库内容放在了<context></context>中。

点击创建的知识库-点击“召回测试”,可以输入一段文本,用与匹配知识库中的文本,匹配到的文本有一个权重分数,上面设置过的阈值是0.5,即大于这个分数的才会显示为“召回段落”。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值