基于AI的投资组合策略,降低极端事件导致投资损失风险

Mitigating Extremal Risks: A Network-Based Portfolio Strategy

论文地址:https://arxiv.org/pdf/2409.12208v1

摘要

在金融市场中,极端事件可能导致投资者蒙受重大损失。本文提出了一种旨在降低极端风险的投资组合策略。运用极值理论,评估了股票之间的极值依赖关系,并建立了反映这些依赖关系的网络模型。我们使用基于阈值的方法来构建这个复杂的网络,并分析其结构特性。为了提高风险分散,我们利用图论中的最大独立集的概念来制定合适的投资组合策略。由于在给定图中找到最大独立集是np困难的,我们使用基于扇区或基于社区的方法进一步划分网络。此外,我们使用风险价值和预期不足作为具体的风险度量,并将建议的投资组合的表现与市场投资组合的表现进行比较。

简介

金融市场波动性大,极端事件(如市场崩盘)对投资组合影响严重,传统风险管理策略面临挑战。传统相关性度量在极端依赖情况下失效,重尾随机变量的二阶矩可能不存在。本研究中提出了极端依赖度量(EDM)和极端图(extremograms)来量化极端依赖性。研究旨在量化股票收益的成对极端依赖性,构建依赖网络,并应用图形工具优化对冲策略。利用EDM表征重尾随机变量之间的依赖程度,构建的依赖网络中无边缘的节点对被视为低依赖。本文引入最大独立集(MIS)概念,构建低极端依赖的多样化投资组合,提高抗极端风险能力。由于寻找MIS是NP难题,研究通过经济部门或社区结构将网络划分为小子网络,以便高效构建投资组合。

数据样本

从Yahoo Finance获取2023年深圳成分股的113只股票数据,交易期为2023年1月1日至12月31日,共242个交易日。计算股票i在第t天的对数收益率:

计算股票p与股票q之间的极端依赖度量(EDM)。

本文提出基于极端依赖结构构建股票投资组合的算法,并给出最优投资组合。

股票收益之间的极端依赖关系

极端依赖度量(EDM)用于量化两个组件之间大值同时出现的倾向,并用于构建股票收益的网络结构。

一维正则变异的定义:函数f在正数域上满足特定条件,表示为f ∈ RV α。多维正则变异(MRV)的扩展:定义了M收敛和正则变异测度的基础。

定义1:在特定条件下,Borel测度的收敛性。

定义2:随机向量Z的分布在特定锥体上是正则变异的条件。

定义3:当Z的坐标渐近独立时,EDM的最小值为0;当支持集中在对角线上时,EDM的最大值为1。

EDM可视为在R = ∥Z∥大时,归一化Z1和Z2之间的交叉矩的极限。

基于极值依赖的股票网络模型

使用极端依赖模型(EDM)构建股票收益的网络,描述其成对的极端依赖结构。网络由顶点集V和边集E组成,表示为G = (V, E)。无向边连接顶点i和j,表示为{i, j}。首先总结网络的重要特征,然后讨论如何利用EDM构建网络。

网络的统计特性

复杂网络从统计角度分析顶点和边的属性。关注六个特性,用于比较不同阈值下的网络特征。分析旨在识别最适合的网络构建阈值。

平均度和度分布

  • 顶点度:指与给定顶点相连的边的数量。

  • 平均度:所有顶点度的平均值,反映网络的整体连通性,平均度越高,网络连接越紧密。

  • 度分布:描述网络中顶点度的分布情况,若遵循幂律分布,少数顶点度高,大多数顶点度低。

  • 无标度网络:其度分布通常呈幂律形式,表示为:

平均路径长度

平均路径长度是网络中任意两个顶点之间的平均距离,通常以连接两个顶点所需的最小边数来定义。较短的平均路径长度意味着网络中顶点之间的影响力更强,信息传播更高效。平均路径长度是衡量网络整体连通性和效率的重要指标。计算公式为:

聚类系数

聚类系数衡量网络中顶点的聚集程度。定义为给定顶点的任意两个邻居相连的概率。计算公式为:

网络直径

网络直径是网络中任意两个顶点之间的最大距离。距离定义为连接两个顶点所需经过的边的数量。网络直径公式为:

图的密度

图密度是网络中实际连接与总可能连接的比率,反映网络的连通性。计算公式为:

基于阈值法的网络构建

  • 股票网络构建:每只股票为一个顶点,采用阈值法构建网络。

  • 边集E定义:边的数量随阈值θ变化,阈值越高,网络越稀疏。

阈值的选择

确定阈值θ对构建股票收益依赖网络至关重要,过低会导致网络稠密且结构不清晰,过高则可能遗漏重要连接。设置五个阈值θ = 0.05, 0.1, 0.15, 0.2, 0.25,构建相应网络并分析特征。

表1显示,阈值越高,网络中孤立节点增多,边数减少,平均度降低。0.15时,网络直径、图密度和平均路径长度与阈值正相关,反映出网络连通性降低。网络直径和路径长度在θ = 0.15时达到峰值,之后因孤立节点增多而下降,因此不再考虑θ = 0.2和0.25的网络。对于阈值0.05到0.2的网络,分析了其经验度分布,0.05和0.1的网络显示快速衰减,缺乏规模无关特性。当θ设为0.15时,度尾分布呈现幂律衰减,网络包含113个顶点。该图被称为股票的依赖网络,未观察到的边表示对应股票收益的渐近独立性。

最大独立集

  • 目标:通过识别低极端依赖的股票组合,提出投资组合策略,以应对市场极端风险。

  • 方法:寻找网络的最大独立集(MISP),以构建投资组合。

  • 定义:独立集是图中不相连的顶点集合,最大独立集是所有独立集中最大的。

  • NP难:MISP问题被证明是NP难的,随着图的增大,求解的时间复杂度增加。

  • 解决方案:采用启发式近似算法(如贪心算法、局部搜索、禁忌搜索)来高效求解MISP。

本文使用贪心算法,逐步扩展顶点集以找到可行解。

基于复杂网络的股票投资组合策略

提出基于图的投资组合策略,通过行业和社区分类方法对网络进行划分。对每个子网络应用图论算法,找到对应的最优投资组合(MISP)。使用风险测量指标:风险价值(VaR)和预期损失(ES)评估策略有效性,帮助投资者规避极端风险。

基于产业分类

根据2021年发布的CSI行业分类标准,113只深证成分股分为11个主要行业,信息技术、工业和医疗保健占据股票数量前三位。同一行业的股票通常在依赖网络中不聚集在同一簇,显示出跨行业的强依赖性。提取子网络后,出现大量孤立顶点,表明不同部门之间的强极端依。

研究发现,基于行业的投资组合比基于社区的投资组合具有更高的波动性和风险,表明行业划分的依赖网络是次优的。

基于GN算法的依赖网络社区发现

基于GN算法的依赖网络社区发现社区结构是复杂网络的关键特征,表现为内部连接密集、外部连接稀疏的模块化组织。社区概念源于社会学,广泛应用于物理、生物、电子和计算机科学等领域。目前有多种算法可用于识别网络中的社区结构,本文使用Girvan-Newman算法将网络划分为21个社区,其中13个为孤立顶点。与无序的颜色分布相比,社区图显示出更强的聚类结构,社区1、2和4占据约80%的网络份额,且所有重要行业的股票均在这三个社区中。重点关注这三个社区,找出每个社区的最大独立集,结果在图7中以蓝色节点表示。

实证研究与结果

提出一种投资组合策略,旨在最小化极端损失风险。使用两种常见风险度量:价值-at-risk (VaR) 和预期短缺 (ES)。比较局部投资组合与整体投资组合。提供针对不同风险承受能力的投资建议。

风险最小的最优投资组合

VaR(风险价值)量化股票投资组合的市场风险,计算公式为:

VaR不符合一致性风险度量的四个公理中的次可加性,因此被认为不够可靠。

预期短缺(ES)是一个一致的风险度量,定义为:

VaR表示在无不利事件情况下的最大预期损失,ES则量化实际不利情境下的预期损失。研究中假设持有期为1天,计算95%置信水平下每只股票的VaR和ES,目标是最小化投资组合的整体风险。权重和限制为1,每个权重在0到0.3之间,整体回报率至少为1.15%。问题被构建为线性规划问题,涉及VaR或ES、股票权重和回报。

本地投资组合分析

以社区1和医疗行业为例,分析本地投资组合策略的表现,使用MATLAB的linprog函数解决最小化问题。计算最大独立集并在表3和表4中报告95%置信水平的对应值,ES值普遍高于VaR。优化问题结果在表5和表6中总结,VaR和ES的风险度量对投资决策影响相似,但在投资权重上存在差异。使用VaR时,建议在Zhifei Biology上投资更多;使用ES时,Zhifei Biology的权重显著降低,Leading Intelligence和Yiling Pharmaceutical的权重增加。评估2024年投资组合表现,比较实际回报与市场组合,结果在图8中展示。图8显示,基于最大独立集的策略在所有时间窗口中降低了社区1和医疗行业的投资组合风险,尤其在市场组合遭遇大幅损失时表现更佳。

整体投资组合分析

最大独立集在风险收益表现上优于市场投资组合,扩展至全球规模时面临NP-hard问题,难以计算。采用行业和社区分类识别网络中的最大独立集,分别解决11个行业和21个社区的最大独立集问题。表7展示了基于VaR和ES的权重分配,部分股票权重为零未列出。社区基础的整体投资组合在多个时间窗口中表现优于行业基础和市场投资组合,尤其在市场下行期间(如2024年1月3-16日、1月17-30日、3月21-29日)。社区基础投资组合的回报更稳定,多个时期实现正回报(如2024年1月3日至3月6日)。

风险比较。行业基础的整体投资组合(黄色)风险低于市场投资组合,使用ES作为风险度量时,社区和行业策略表现相似;使用VaR时,行业投资组合在市场下行时表现波动大,未能有效规避极端风险。

极端风险原因。行业划分导致孤立节点过多,增加了同一社区内股票间的关联性,从而加大了下行市场的风险。

投资策略建议

  • 高风险偏好:局部投资组合可能带来更高回报,但波动性大。

  • 低风险偏好:推荐社区基础的整体投资组合,提供更低风险和稳定的表现。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值