老年抑郁症被称视为一种"隐形威胁",它不仅影响个体的心理幸福感,还与心血管疾病、认知功能下降及高死亡率密切相关。研究表明,抑郁症[1]的形成并非由单一因素导致,而是多种社会、经济及心理因素共同作用的结果。
在这些影响因素中,社会经济地位(SES)[2]的作用尤为显著,特别是在老年群体中。低 SES 往往意味着较低的收入、有限的教育机会和不稳定的工作状况,这不仅增加了个体的生活压力,也限制了其获得医疗资源的能力。更重要的是,低 SES 群体还可能面临更高的社会孤立风险和更强的孤独感。
更重要的是,低 SES 群体还可能面临着较高的社会孤立和孤独感,这些因素可能成为抑郁症的“推手”。
基于这种复杂的影响机制,北大公卫联合天津医科大研究团队采用潜在类别分析(LCA)[3]方法,将 SES 综合定义为包含家庭收入、教育水平和就业状态的高、低两类。通过这种方式,进一步结合中介分析[4]和交互模型[5],深入探讨了社会经济地位如何通过孤独感和社会活动影响老年人抑郁症的发生。
最终这项研究 The associations of socioeconomic status, social activities, and loneliness with depressive symptoms in adults aged 50 years and older across 24 countries: findings from five prospective cohort studies 发表了在 The Lancet Healthy Longevity[6] 期刊上,为进一步理解抑郁症的复杂机制提供了新视角,也为制定针对低 SES 人群的精准干预策略指明了方向。
文章思路
核心数据指标
社会经济地位(SES)、社会活动、孤独感、抑郁症
研究设计思路
研究的数据来源于五个国际大型队列研究:HRS[7]、ELSA[8]、SHARE[9]、CHARLS[10]、MHAS[11],覆盖 24 个国家,时间跨度为 2008-2019年。这些队列研究不仅提供了跨文化的多维视角,还具备高质量的随访数据,有助于捕捉 SES 对抑郁症的全球趋势。
为了保证数据的完整性和可靠性,研究设定了严格的纳入和排除标准:
-
所有参与者需年龄≥50岁
-
基线期需要有社会经济地位、社会活动、孤独感的完整信息
-
至少完成两次随访评估
-
排除以下人群:基线期存在抑郁症状者、相关数据缺失者、随访期间失访者
最终,研究纳入了 69,160 名参与者,中位随访时间为 5 年。这个样本量不仅庞大,而且具有很好的代表性,为研究结果的可靠性提供了有力保障。
面对来自五个国际队列的数据,研究者需要解决一个核心问题:如何让来自不同文化和背景的数据具有一致性,从而确保分析结果科学且可信?
首先,考虑到各国的社会经济结构差异显著,社会经济地位(SES)和抑郁症的定义需要统一化。
首先,考虑到各国的社会经济结构差异显著,社会经济地位(SES)和抑郁症的定义需要统一化。比如在中国,“低SES”可能代表农村劳动力,而在美国可能指长期失业者。
为了消除这种差异,研究者采用潜在类别分析(LCA),通过家庭收入(四分位)、教育水平(低于高中、高中、大专及以上)和就业状态(未就业、在职、退休)这三个维度将 SES 统一分类为"高"或"低",从而在全球范围内建立了具有可比性的分类标准。
而在研究聚焦的社会活动和孤独感两项关键指标上,研究者采用以下方式定义:
-
社会活动:通过个体参与社交团体的数量来衡量,将参与者分为社交活动活跃和不活跃两类
-
孤独感:基于 R-UCLA 量表[12]或单项问题进行测量
这两种方式分别从客观和主观角度展示了社会联系的强度与情感支持的水平。
同样,抑郁症的测量标准化也十分重要。五个队列中使用的 CES-D[13] 和 EURO-D[14] 量表版本不同,这就像用不同刻度的尺子测量同一对象,如果不统一就无法进行可靠的比较。因此研究者进一步通过调整评分确保不同版本的量表定义一致,解决了跨文化测量的不一致性的问题。
另外,为了减少混杂偏倚,研究还纳入了多项协变量,包括人口学特征(如年龄、性别、婚姻状况)、生活方式(如 BMI、吸烟、饮酒、体育活动)及健康状况(慢性病数量)。
通过对高、低 SES 组基线特征的详细描述,研究发现低 SES 组在多个方面表现出显著的健康劣势:
-
低 SES 组中社会不活跃比例高达55.8%,远高于高 SES 组的36.9%;
-
感到孤独的比例也更高(32.2% vs. 27.1%)(32.2% vs. 27.1%)
-
慢性病患病率也更高(63.7% vs. 52.5%)
这些数据处理策略的极其值得借鉴。通过 LCA,使得 SES 的分类变得统一且可比较;通过量表的标准化,抑郁症的定义在跨文化背景中获得一致性;通过数据清理,研究结果避免了因缺失值带来的偏倚。这些方式让后续得到分析结果更加稳健。
由于研究的主要目的是为了全面探索 SES 对老年抑郁症风险的影响,不仅聚焦于直接关联,另外还通过探索中介效应、交互效应及联合效应,深入解读 SES 影响抑郁症的潜在机制。
研究者首先通过采用 Cox 比例风险模型[15]分析 SES 对抑郁症的独立作用。这种方法能够在时间-事件数据中估算风险比(HR),同时允许逐步调整协变量以消除混杂因素的干扰。
低 SES 显著增加抑郁症风险(HR=1.34,95% CI 1.23–1.44)
通过图中的结果我们可以观察到,在整合了五个国际队列的数据之后,无论在哪个国家或文化背景下,SES 都对抑郁症有一致的显著影响。
为了进一步了解这一影响在不同人群中的表现,研究进行了亚组分析,按年龄、性别和慢性病状态分层。
结果发现在不同亚组中 SES 与抑郁症的关联强度存在差异,男性(HR=1.53)和60-69岁人群(HR=1.45)对 SES 更为敏感。这反映了不同人群对社会经济因素的敏感程度可能不同。
但研究的重点不仅在于直接效应,还在于进一步探究了 SES 通过社会活动和孤独感间接影响抑郁症的路径。通过因果中介分析,研究评估了这两个中介变量的作用:
-
社会活动中介了 SES 与抑郁症关联的 6.12%
-
孤独感中介了 5.54%
虽然比例较低,但它们指向了 SES 影响心理健康的两个关键路径。
同时,研究检验了 SES 与孤独感、社会活动之间的交互作用,发现 SES 与孤独感之间存在显著的乘性交互效应[16](HR=0.84),表明孤独感对低 SES 个体的抑郁症风险具有放大效应。
在结果的基础上,研究进一步分析了 SES、社会活动和孤独感的联合效应,通过构建组合模型量化三者叠加对抑郁症风险的影响。
结果显示,低SES、社会不活跃且孤独的个体抑郁症风险最高(HR=2.45),是高 SES、社会活跃且无孤独感群体的 2.45 倍。结果清晰地指出了多因素叠加对抑郁症风险的累积效应,同时帮助识别最需要干预的高危群体。
为了验证 SES 与抑郁症风险的关系是真实且可靠的这一问题,研究选择了多种验证方法增强结论的可信度和普适性。
首先是考虑到由于研究的数据来自五个国际队列,不同国家的样本结构、变量定义和随访时间都有差异。如果不经过验证,很难保证这些因素不会影响结果。
为此,研究者先采用了固定队列分析[17],只使用各队列的首轮数据进行测试,确保结果不会因为随访时间的长短而产生偏倚。
其次研究者还对变量定义进行了调整,例如将年龄从连续变量改为分组变量,将孤独感从分类变量改为连续变量。通过尝试不同的视角来观察同一个问题,验证分析结果是否一致。
结果发现无论数据如何调整,低 SES 始终显著增加抑郁症风险,这表明研究结论具有很高的稳健性。
最后考虑到在老年人群中,死亡是一个不可忽视的竞争事件。一个低 SES 个体可能因死亡而未能经历抑郁症发病,这种情况如果不加以考虑,可能会导致抑郁症风险被低估。
因此研究者引入了竞争风险模型[18],专门用于区分抑郁症的真实风险和其他因素的干扰。同样结果表明即使将死亡作为竞争风险事件,低 SES 对抑郁症风险的影响依然显著,这进一步强化了结果的可靠性。
通过以上一系列严谨的统计分析,研究不仅系统全面评估了 SES 与抑郁症之间的复杂关系,还通过机制解读和高危群体定位,为心理健康干预策略提供了精准的循证依据。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。