人工标注末日宣言:零训练数据自循环模型成为现实

img

一句话概括:当大模型学会自产自销,人类终于沦为AI进化路上的NPC——论如何用代码执行器当裁判,让模型在左右互搏中完成推理能力的内卷式进化

第一阶段:识别核心概念

1. 论文主要贡献点分析

(1)提出全新的 “Absolute Zero” 范式论文中最核心的贡献是引入了一个被称为“Absolute Zero”的新型学习范式。与以往需要人类提供大规模数据(问题和答案、或问题和中间推理过程)的方式不同,Absolute Zero 主张模型完全在“零外部数据”的前提下自我生成任务并解决任务,从而不断提升自身的推理能力。

(2)在这个范式下构建了“Absolute Zero Reasoner (AZR)”他们落地实现了一个系统,名叫 AZR(Absolute Zero Reasoner)。AZR 允许同一个大语言模型同时充当任务提议者(Proposer)和任务求解者(Solver),通过自我交互(self-play)来提出问题并解答问题。这个过程不需要外部给定的标注数据,模型会利用“可验证的环境”(如 Python 代码执行器)来自行检查并评估回答的正误。

(3)可在代码与数学推理领域表现出色且跨领域迁移强在没有任何外部数据的情况下,AZR 依然在常见的代码、数学推理任务中达到了极具竞争力的性能,甚至优于某些依赖数万条人工标注数据进行训练的现有方法。此外,它在跨领域任务中的迁移表现也非常亮眼(例如只在自生成的代码问题中训练,却能在数学推理任务中得到显著提升)。

(4)强调了自我生成任务和自我学习的重要性作者认为,随着模型能力的增强,完全依赖人类专家来创建“学习任务”可能变得越来越不可持续。未来若出现超出人类水平的智能体,人类可能无法为其提供足够有挑战性的任务。在这种背景下,Absolute Zero 为 AI “自我进化”提供了一种全新思路。

2. 理解难点识别

在本论文中,有几个概念/方法尤为关键,需要深入理解:

  1. Absolute Zero vs. 传统 Zero-RL 设置

    • 传统的“零数据”方法(zero setting)通常至少有一批人类编写的问题或答案对(不含中间推理),供模型来通过强化学习做训练;但这里的“Absolute Zero”则是连问题本身也要由模型自发生成并验证,真正实现“零外部数据”。这一区别是论文的重要基石。
  2. 自我生成任务的机制(Proposer-Solver 角色分工)

    • 如何让同一个模型既能“提问题”又能“解问题”,并且根据解题成功或失败来评估任务的质量?这背后涉及一个多角色、多回合的交互机制,需要重点理解任务生成和任务解答各自的流程与目的。
  3. 可验证环境(代码执行器)

    • 论文选择 Python 代码执行器作为对“答案是否正确”的唯一判据。如何将“代码执行”这件事映射为“验证模型输出是否正确”是一个核心环节,也能避免常见的“模型自己当裁判”导致的偏差或作弊问题。
  4. 三种推理模式:归纳(Induction)、演绎(Deduction)和溯因(Abduction)

    • 论文将代码推理问题分为三种互补的类型。模型在自生成任务时,可以随机地生成这三种不同形式的问题,并在解题过程中展现不同的推理能力。这三种模式的具体含义及生成方式也是学习的关键。
  5. 奖励与训练算法(尤其是多任务的强化学习更新)

    • 虽然第一阶段不详细展开公式,但需要知道他们设计了一种对不同任务类型分别计算基线的做法,用于减小训练中的方差,并保证在多种任务模式下都能有效学习。这被称为“Task-Relative REINFORCE++”。

3. 概念依赖关系

根据上述关键概念,可以将它们的关系梳理为以下脉络:

  1. 核心范式:Absolute Zero

    • 这是论文的总框架,主张在没有任何外部数据的前提下,自我生成任务并进行自我监督。
  2. 具体实现:Absolute Zero Reasoner (AZR)

    • AZR 处于这个核心范式下,采用了两个关键模块/角色——Proposer 和 Solver——以及一个可验证环境(Python 执行器)。
  3. 三种推理模式(Induction / Deduction / Abduction)

    • 这三种模式是 AZR 所能提出和解决的任务类型,用以保证任务多样性并全面提升推理能力。
  4. 可验证环境

    • 无论什么类型的任务,最终都要通过执行代码来判断“答案对不对”,从而给出真实的奖励。
  5. 多任务强化学习(Task-Relative REINFORCE++)

    • 这是支撑 Proposer 和 Solver 在多种模式下进行稳定训练的强化学习算法,串联了任务生成与任务求解的更新流程。

基于这些核心概念的关系,最好的切入点通常是先从“Absolute Zero 范式”的宏观思想开始,让读者知道为什么要提出这种“自我生成任务”的思路,然后再解释其具体落地方法(Proposer-Solver 自对弈结构)和如何评估自生成的任务(通过代码执行器)。最后,再深化到这套体系中不同类型的推理模式与奖励机制之间的关系。


第二阶段:深入解释核心概念

根据第一阶段的分析,“Absolute Zero Reasoner (AZR)”中的 “Proposer-Solver 自我对弈机制”“可验证环境(Python 代码执行器)” 这两部分是最关键、同时也最有挑战性的内容。下面,我们会通过一个通俗易懂的日常比喻,来帮助读者理解这一系列技术概念背后的原理和流程。

1. 设计生活化比喻

让我们构造一个“自编自演剧团”的比喻来对应 AZR 在论文中做的事情:

  • 剧情背景: 想象有一个剧团,它既没有编剧,也没有外部导演——一切都要靠剧团自己来完成。剧团必须先“想出剧情”再“把剧情演出来”,并由一个公正的“舞台监督”来判断演得是否达标。

  • 剧团角色

    1. “提议者”(Proposer)就像剧团的“编剧”。它负责想出剧情大纲(相当于“任务的题目”)。
    2. “求解者”(Solver)就像剧团的“演员”。他们根据编剧的剧情大纲去演绎具体的剧本(即“解决任务”)。
  • 舞台监督: 用来对应论文中可执行、可验证的“代码执行器(Python 解释器)”。它有一套严格的评分标准:如果演员按编剧所写的内容完整且正确地呈现了剧情,就会给出好的评价(奖励);如果出现逻辑不通或表演错误,则给差评或罚分。这里“舞台监督”只看结果是否准确,不会过度干预演员排练的过程。

在这个比喻中:

  • “零外部剧本” = 论文中的“零外部数据”:没有任何人类写好的剧本(即没有人类提供的训练题目)。
  • 剧团既当编剧又当演员 = “一个模型既做 Proposer 又做 Solver”。
  • 舞台监督的评分结果 = “环境提供的可验证的奖励信号”。

这个剧团通过自编自演的循环,不断演出新的小剧目并根据舞台监督的评分来改进自己的“编剧能力”与“演技水平”。这就像论文里通过 Proposer-Solver 自我对弈来提升模型的推理水平一样。

2. 建立比喻与实际技术的对应关系

让我们更明确地把这个比喻逐条映射到实际概念上:

比喻元素对应的技术概念原因/合理性
剧团(一个整体)整个“Absolute Zero Reasoner (AZR)”都是同一个团队(或同一个模型)在做两件事:写剧情 & 演出
编剧(Proposer)负责生成(或提议)新任务编剧负责写“剧情大纲”,对应模型提出新的问题/任务
演员(Solver)负责解决任务/执行剧情演员拿到编剧给的任务剧本,具体去解决并产生可验证结果
舞台监督可验证环境(Python 代码执行器)监督员并不编剧或参演,只根据效果给出客观评判
自编自演循环自我对弈 (self-play) 训练过程编剧和演员不断迭代出更好的剧本和演出
零外部剧本零外部数据(Absolute Zero)没有已有题库或任务,只能靠模型自发生成
评分制度奖励(reward)编剧和演员的表现最终由监督来打分,这个分值会用于强化学习更新

通过这样的对照表,可以清晰看到每个比喻环节在系统中的对应位置,也明白为什么一个“没有外部剧本的剧团”能代表“零数据下的自提自解(Absolute Zero)”学习思路。

3. 深入技术细节(引入数学公式及其自然语言版本)

接下来,我们从比喻过渡到论文中的核心技术原理。此时会出现一些强化学习的基本公式和奖励定义。论文里有几个重要的公式或数学描述,下面选取两个关键示例来做展示(并进行自然语言替换的解释):

3.1 强化学习主目标:让“演员表演”拿到高分

在 AZR 中,最基础的一部分是让 Solver(演员)在给定任务下拿到舞台监督的好评(reward)。如果用 表示“演员的策略”(即如何输出解答),用 表示任务输入(编剧给的剧情大纲),用 表示演员的解答(最终的演出),用 表示真实环境判定的正确答案(舞台监督期望看到的结果)。那么在最基础的强化学习奖励里,通常是:

  • 自然语言替换版: “我们想让演员在见到‘剧情大纲’后,演出的结果能够得到舞台监督的高评价;因此要把‘演员的决策方式’做优化,去最大化‘表演评分’的平均值。”
3.2 角色组合及多任务:让“编剧”想出具有学习价值的剧情

在论文里,编剧(Proposer)也要用强化学习的思路去进化:它既不能写得太简单(毫无挑战),也不能写得无解(演员无法演出)。因此他们定义了一个“提议者的奖励”来衡量任务的学习价值。例如:

如果演员必定失败或必定全对(无学习价值)其他情况下(中等难度最具价值)

  • 自然语言替换版: “如果编剧写出的剧情对演员来说要么太简单,要么根本演不下去,那么这个剧情就没帮助。只有那些演员可能会犯错但又有机会成功的剧情,才能给编剧带来更高分。”

从比喻角度看,这就好比舞台监督对编剧说:“你写的剧本要能让演员‘既要绞尽脑汁又有机会演好’,而不是要么超级简单一眼就会演、要么根本是一个不可能完成的剧本。”——难度适宜的本子,才有最高价值。

4. 将技术细节与比喻相互映射

通过上述公式可以看出,这套强化学习体系本质上是在做“编剧和演员”的双向优化:

  • **“演员”**希望在给定的剧本场景下获得更高的演出得分;
  • **“编剧”**则希望所写的剧本能最大化演员的“学习增益”,避免太简单或无解。

在比喻中,这一过程可以这样描述:

  1. 编剧先写一个剧情大纲,交给演员去演;
  2. 演员尝试演出,舞台监督给出反馈:是演得好还是演得差?
  3. 如果这个剧情太简单或太难,编剧就拿不到好分;如果是中等难度,编剧得分才会变高;
  4. 演员也会根据自己演出的成败来更新自己的演技策略。

这样,编剧和演员就在一个自循环中不断磨合,各自都想提高自己的得分,也就推动了整体表演水平进步。

  • **数学上的组合:**论文中提到 “Task-Relative REINFORCE++”,本质是为了在多任务(多种剧情类型:演绎、归纳、溯因)和双角色(编剧、演员)上做更精确的奖励基线处理,让训练更稳定。这对应到比喻中:剧团有不同类型的“剧目”(推理模式)需要编剧去写,也有编剧和演员两套不同的“评分标准”。通过细化评分,可以让每种类型的发挥都被公平衡量。
  • **比喻局限性:**需要指出的是,这个“剧团”比喻只能大致表达出“提出任务、解决任务”的循环机制,无法完全刻画真实强化学习里各种随机性与算法细节。例如,编剧和演员的随机探索过程、奖励基线计算等,都是比喻里无法严格等价的部分。但这个故事足以让读者大体理解核心逻辑。

5. 总结

综上所述,“Absolute Zero Reasoner” 的核心机制,就像一个没有剧本支援、只能自编自演的剧团一样:

  • 编剧(Proposer)提出剧情(任务),不断学习写出“难度适宜”的新剧本;
  • 演员(Solver)接到剧情后进行排演(求解问题),通过环境监督(Python 执行器)得到客观评分;
  • 双方在多种类型的“剧目”里共同成长,以强化学习方式调整各自策略,形成一个自我迭代、自我提升的闭环。

这样的“自编自演”机制,使得模型不依赖人工外部数据,就可以获得显著的推理能力提升。借助我们所用的剧团比喻,读者应该能更加直观地理解论文“Absolute Zero”理念以及“两角色 + 可执行环境”的关键思路。


第三阶段:详细说明流程步骤

在这一阶段,我们将详细描述论文中提出的完整模型或方案处理问题的具体流程。我们将从模型输入开始,一步步讲解通过各个过程如何处理得到输出,并提供清晰的伪代码形式,让没有看过论文的人也能够还原出该方法或流程的具体实现。我们将确保每个过程的输出能够作为下一个过程的输入,最终实现整个系统的运作。

1. 在 AZR 中,如何通过自我对弈学习任务

输入: AZR 的训练过程从初始状态开始,模型以一个基础的编码模型为起点,这个模型尚未接受任何具体任务的训练(即“零数据”)。初期阶段,任务的定义完全依赖于模型自己。

流程

  1. 提议任务(Proposer):

    • 模型首先根据自己的现有知识生成一个任务。这个任务可以是代码推理任务、数学问题等。模型通过从其之前生成的任务中抽取参考,来设计新的任务,并尝试描述该任务的输入和期望输出。
    • 此时,模型并没有“外部数据”来帮助它构建任务,所有任务都是从头开始生成的。任务的难度应当适中,以便使得后续的求解者能够解答。
  2. 执行任务(代码执行器/环境):

    • 提出的任务(例如,一段代码及其输入)将交给 Python 代码执行器进行验证。执行器检查模型提出的任务是否符合语法规范,是否可运行,并根据实际运行结果来判断模型的输出是否正确。
    • 此时,环境(Python执行器)会返回一个验证结果,作为“奖励”信号给模型。
  3. 求解任务(Solver):

    • 求解者(Solver)部分使用模型自身的推理能力,根据任务的输入部分生成一个答案。求解者输出的解答将通过代码执行器再次验证其正确性。
    • 如果解答正确,模型将获得奖励;如果解答错误,模型将得到惩罚。
    • 该部分的任务是让模型基于已有的推理能力解决问题,并通过执行器验证其输出的有效性。
  4. 奖励计算

    • 在任务的每个阶段,系统都会计算奖励:提议者根据任务的学习价值、难度来评估提议的任务是否值得学习,求解者则根据其生成的答案与真实答案的匹配程度来获取奖励。
    • 强化学习的目标就是优化这两个角色的策略,通过持续交互和学习,使得每个任务提议和任务解答都能够逐步提升。

输出: 通过多轮的交互与学习,模型会不断提高生成任务和解决任务的能力。这些改进最终反映为一个在多种任务类型(如代码推理、数学推理)下都表现优秀的智能体。

2. 详细步骤:任务提议与求解的循环

为了让读者更加清晰地了解整个流程,我们可以用伪代码来描述这一过程。以下是简化版的伪代码,用于展示AZR的自我对弈学习循环。

# 初始化任务生成与解决的模型
proposer_model = initialize_model()  # 提议者模型
solver_model = initialize_model()    # 求解者模型
buffer = initialize_task_buffer()    # 任务缓冲区,存储历史任务
iterations = 10000                   # 训练总轮数

# 自我对弈学习过程
for iteration in range(iterations):
    # 1. 提议者生成新任务
    task = proposer_model.generate_task(buffer)

    # 2. 执行任务验证 (获取任务的标准输入输出)
    task_input, task_ground_truth_output = execute_task_for_validation(task) # Proposer提出的任务可能不完整,环境帮助完善它

    # 3. 求解者根据任务生成解答
    solver_answer = solver_model.solve(task_input) # Solver只看到任务的输入部分

    # 4. 验证求解者的解答
    is_correct = verify_answer(solver_answer, task_ground_truth_output) # 用环境验证Solver的答案

    # 5. 计算奖励并更新模型
    propose_reward = calculate_propose_reward(task, solver_answer, is_correct) # Proposer的奖励考虑Solver的表现
    solve_reward = calculate_solve_reward(is_correct) # Solver的奖励直接基于正确性

    # 6. 更新提议者与求解者的策略
    proposer_model.update(propose_reward)
    solver_model.update(solve_reward)

    # 7. 将当前有效任务加入历史任务缓冲区 (如果任务是有效的)
    if is_task_valid(task_input, task_ground_truth_output):
        buffer.add((task_input, task_ground_truth_output))

# 输出训练后的模型
trained_model = solver_model # 通常我们关心的是Solver的能力
步骤说明:
  1. 初始化模型:我们初始化了两个模型(或同一个模型的两个角色),一个是提议者模型(负责生成任务),另一个是求解者模型(负责解答任务)。同时,初始化了任务缓冲区,用于存储历史生成的有效任务。
  2. 提议任务:每个训练轮次开始时,提议者模型会根据当前的任务和历史经验生成一个新的任务。这个任务可以是代码推理任务或数学推理问题。
  3. 执行任务验证 (获取标准答案):生成的任务会交由 Python 执行器验证。这一步的目的是确保任务的合法性和可行性,并得到任务的标准输出(Ground Truth),供后续评价Solver使用。
  4. 求解任务:求解者模型会接收生成的任务输入部分,并尝试输出一个答案。求解者的目标是通过推理和分析来找到正确的答案。
  5. 验证解答:执行器验证求解者给出的解答是否与之前得到的标准输出匹配,并返回结果。
  6. 奖励与更新:根据验证结果,系统计算出提议者和求解者的奖励,并通过强化学习算法(如 Task-Relative REINFORCE++)来更新模型的策略,使得提议者和求解者都朝着更优的方向发展。
  7. 更新任务缓冲区:每次生成的有效任务(即有标准输入和输出的任务)都会被加入任务缓冲区,以便在后续的训练中作为参考或输入。

3. 强化学习与奖励计算

在每次任务生成和任务求解的过程中,奖励计算起着至关重要的作用。为了简洁地展示奖励计算的过程,以下是关键奖励公式:

  1. 提议者奖励: 提议者奖励是根据任务的“可解性”和“学习价值”来计算的。当任务对求解者来说既不容易也不太难时,奖励较高。奖励计算公式为(论文中公式4的简化概念):

    如果对此任务的平均成功率或其他情况

    其中 是Solver对该提议任务多次尝试的平均成功率。

  2. 求解者奖励: 求解者奖励取决于其解答的正确性。正确解答会得到正奖励,错误解答则会得到惩罚(论文中更复杂的奖励结构还包括格式惩罚等,这里简化为核心正确性奖励,对应论文公式5):

    其中, 是求解者的解答, 是正确答案, 是指示函数,若解答正确则奖励为 1,否则为 0。

4. 总结

本文提出的 Absolute Zero Reasoner (AZR) 模型通过自我对弈的方式,在没有任何外部数据的支持下,逐步提高自己的推理能力。在这一过程中,模型充当了“提议者”和“求解者”两个角色,自动生成任务并解决任务,同时根据可验证环境提供的反馈进行强化学习。整个学习过程通过不断生成任务、解决任务、验证答案和计算奖励,最终实现了跨领域的推理能力提升。

AZR 的这种零数据、自我生成任务和自我解决任务的模式,展现了模型在完全不依赖人工标注数据的情况下,如何实现超越传统方法的推理表现。通过详细分析和伪代码展示,读者可以理解这一过程的每个步骤,并能够在实际应用中重现这一流程。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值