DataAgent是最容易落地的Agent场景?

数据分析是任何企业的核心需求。在大模型技术蓬勃发展的当下,众多企业都在思考如何将AI能力快速注入现有业务

从目前的市场表现来看,DataAgent(数据智能体)似乎成为了最易落地且价值明显的Agent应用场景。

img

为什么DataAgent落地性最强

传统企业数据分析面临多重痛点:专业BI工具使用门槛高、过度依赖技术部门、报表生成周期长、数据洞察获取效率低。

一位数据分析师曾向我吐槽:“公司要求每周提交销售分析报告,我得花一整天编写SQL查询、处理数据、生成可视化,这还不包括临时分析需求。”

img

这正是DataAgent能够解决的核心问题。DataAgent将大模型与数据分析能力结合,通过自然语言处理实现了普通用户与复杂数据的无缝交互。

用户只需用日常语言提问:"2024年第四季度各地区销售额同比如何变化?"智能体便能自动生成SQL查询、执行分析并以可视化方式呈现结果。

DataAgent落地性强的关键在于其应用场景刚需且价值明确:

  1. 业务人员摆脱了对技术团队的依赖,自助完成数据分析决策
  2. 企业决策链路缩短,从"提需求→排期→开发→交付"变为即问即得
  3. 数据团队从重复性报表工作中解放,专注更高价值的数据治理与模型构建
  4. 投资回报明确可量化,通常能减少30%-50%的数据分析人力成本

DataAgent的核心技术路径

img

DataAgent实现数据分析智能化的核心技术路径主要有三种

自然语言转代码:利用大模型直接将用户提问转换为Python、R等数据分析代码,执行后生成结果。这种方式适用于灵活性较高的场景,能处理复杂的统计分析和机器学习任务。

自然语言转SQL:让大模型理解用户的问题并生成SQL查询语句,这是目前最成熟的实现路径。针对结构化数据查询效率高,准确率可达到商用水平。实现方式包括微调模型(如SQL-Coder)和精心设计的提示工程,通过添加数据库Schema信息和Few-shot示例显著提升准确率。

自然语言转API:将企业常用分析指标和报表封装成API,大模型只需调用相应接口无需直接接触原始数据。这种方式数据安全性最高,也最容易保证结果准确性,适合对数据安全要求极高的金融、医疗等行业。

智能体实际部署时,这三种技术路径往往是混合使用的。某友薪酬分析助手和某科技Agent产品就融合了多种技术路径,能够根据不同分析场景智能选择最优方案。

如何打造企业级DataAgent

img

从落地角度看,一个成功的企业级DataAgent需要关注以下几个核心环节:

数据接入与质量:数据是智能体的源头活水。

除传统的结构化数据外,半结构化数据(如日志、Markdown文档)和非结构化数据(图片、PDF、邮件等)也应纳入考量范围。高质量的元数据管理是DataAgent正常运作的基础,应确保数据表和字段有充分的业务描述,便于智能体理解。

技术架构选型:根据企业的安全要求和应用场景,可选择三种典型架构:

  • 直接交互方案:大模型直接访问数据库,架构简单但安全性较低
  • 领域模型分层:通用大模型负责理解意图,领域小模型负责SQL生成
  • API调用方案:封装核心指标为API,不让大模型直接接触数据

模型与算法策略:对于NL2SQL核心能力,可通过三种方式提升准确率:

  • 丰富的Schema信息:为表和字段提供详细业务描述
  • Few-shot示例:收集高质量的问题-SQL对作为提示示例
  • 模型微调:针对企业特定数据模型和业务场景微调模型

结果验证与可解释性:数据分析结果直接影响决策,必须保证可靠性。可通过SQL语法检查、结果异常检测、置信度评估等机制,辅以查询过程可视化,确保用户理解结果来源和可靠性。

用户反馈循环:建立用户反馈机制,收集用户对结果的评价和修正,不断优化系统表现。整个系统应形成"提问-分析-反馈-优化"的闭环,实现持续进化。

结语

市场上已有多个成功的DataAgent案例:X友的薪酬分析助手通过自然语言查询薪酬数据,实现了70%的算薪效率提升;X云的TAgent可在企业内私有化部署,确保数据不外流;某势科技的SAgent实现了完整的数据全生命周期管理,支持秒级响应ad hoc查询。

从这些产品表现来看,DataAgent正在从简单查询向更深层次的数据智能演进:

现阶段:以描述性分析为主,回答"发生了什么"的问题

近期目标:加强诊断能力,解答"为什么会这样"的问题

未来方向:提供预测和规范分析,回答"会发生什么"和"应该怎么做"

AI驱动的数据分析将帮助企业实现智能分析,从海量的数据中快速获取特定洞察。与传统BI工具不同,DataAgent能根据用户需求动态生成分析对象,无需预先定义所有可能的查询路径,极大提升了数据利用效率。

对于企业而言,DataAgent或许是大模型能力落地的最佳切入点 - 它不仅能够解决实际业务问题,还能带来明确的效率提升和成本节约。随着技术的不断成熟,DataAgent将成为企业标配的数据助手,为数据驱动决策提供强大支持!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值