vLLM本地部署大模型参数调整(上下文长度)

一、本地大模型参数

  • max_position_embeddings

​ 模型架构参数,位于模型的config.json,表示模型支持的最大位置编码长度(即模型训练时能处理的序列最大长度)

二、vLLM框架参数

  • –max-model-len

​ vLLM 的运行时控制参数,定义单个请求的最大处理长度(输入prompt + 生成内容的 token 总数),确保不超过硬件显存容量

  • –max-model-len VS max_position_embeddings

参数控制层级物理限制来源max_position_embeddings‌模型架构层‌训练数据长度和位置编码矩阵的维度–max-model-len‌推理服务层‌GPU 显存容量和业务需求

vLLM 在启动时默认从模型配置文件中读取 max_position_embeddings 值,并将其作为 --max-model-len 的默认值

  • 若显式设置 --max-model-len,则覆盖模型配置中的 max_position_embeddings

  • 实际生效的上下文长度取两者的最小值(需满足 effective_max_len ≤ min(max_position_embeddings, hardware_max_len))

  • –max-num-batched-tokens

​ 控制单个推理批次中所有请求的token总数上限,直接影响吞吐量,未显式设置时,vLLM会根据max-model-len和max-num-seqs自动计算:max_num_batched_tokens = max_model_len * max_num_seqs(保证 max-num-batched-tokens ≥ max-model-len * max-num-seqs

  • 典型场景示例

​ 假设max_model_len=4096且max_num_seqs=256时:

  • 自动计算:max_num_batched_tokens≈4096*256=1,048,576

  • 手动设置:若显存不足,可降低此值(如–max-num-batched-tokens 16384)

  • max-num-seqs

​ 并行处理请求的个数,当 max-num-seqs=5 且同时收到 6 个请求时,vLLM 会按照以下逻辑处理:

核心调度规则

  • 请求队列分层

  • 活跃批次(Active Batch):当前正在处理的请求(最多 max-num-seqs 个,即 5 个)

  • 等待队列(Waiting Queue):超出并发限制的请求会自动进入等待队列(剩余 1 个)

  • 调度优先级

​ 按请求到达顺序处理(FIFO 原则),前 5 个请求进入活跃批次,第 6 个请求在等待队列中保留

#!/bin/bashCUDA_VISIBLE_DEVICES=0 vllm serve /root/qwq-32b --served-model-name QWQ-32B --port 8080 --gpu-memory-utilization 0.98 --max-model-len 72768 --max-num-batched-tokens 72768 --block-size 64  --max-num-seqs 3 --swap-space=24 --enforce-eager --trust_remote_code --enable-prefix-caching  --enable-auto-tool --tool-call-parser hermes &
# 输出后台进程的 PIDecho "vllm server is running in the background with PID $!"

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户想了解如何使用vLLM部署DeepSeek大模型。首先,我需要回顾一下用户提供的引用内容,确保回答准确。根据引用[1]和[3],部署步骤包括安装Python环境、下载模型、安装vLLM,以及启动服务。同时,要注意可能的安装错误和系统兼容性问题,比如vLLM不支持Windows,只能在Linux或macOS上运行。 用户可能需要详细的步骤指导,所以需要分步骤说明。首先,安装Python环境,推荐使用3.8以上版本,并用conda创建虚拟环境。然后,下载DeepSeek模型,需要注意模型格式是否为vLLM兼容的HuggingFace格式。如果用户下载的是原始仓库的模型,可能需要转换格式,这里可能需要提醒用户检查。 接下来安装vLLM,引用[3]提到建议从源码安装以获得最新优化,所以需要给出两种安装方式:pip直接安装和源码安装。这里要注意用户可能遇到的安装问题,比如依赖项缺失或版本冲突,可能需要安装CUDA工具包和正确版本的PyTorch。 在启动服务部分,需要给出示例代码,说明如何导入模型和启动服务,包括参数设置如tensor并行和端口号。同时,用户可能需要知道如何测试API,所以提供curl命令示例会很有帮助。 另外,用户提供的引用中提到了一些常见问题,比如安装报错、启动报错和Windows不支持,这些都需要在注意事项里强调。特别是Windows用户可能需要切换到Linux环境,或者使用WSL,但官方不支持可能会有问题,需要提醒。 最后,生成相关问题时要围绕部署过程中的其他方面,比如性能优化、兼容性处理、监控方法等,帮助用户进一步解决问题。需要确保回答结构清晰,步骤详细,避免遗漏关键点,同时引用正确的来源。</think># 使用vLLM部署DeepSeek大模型的实践指南 ## 一、环境准备 1. **Python环境配置** 推荐使用Python 3.8及以上版本,建议通过conda创建虚拟环境: ```bash conda create -n vllm_env python=3.10 conda activate vllm_env ``` 需安装CUDA 11.8或更高版本,并验证PyTorch与CUDA的兼容性[^3]。 2. **模型文件准备** 从官方渠道下载DeepSeek模型权重(如`DeepSeek-7B`),确保模型文件为HuggingFace格式: ``` /path/to/deepseek_model/ ├── config.json ├── model.safetensors └── tokenizer/ ``` ## 二、vLLM安装与验证 ### 标准安装(推荐) ```bash pip install vllm==0.3.3 # 确认版本兼容性 ``` ### 源码安装(启用最新优化) ```bash git clone https://github.com/vllm-project/vllm.git cd vllm && pip install -e . # 开发模式安装 ``` 安装后验证: ```python import vllm print(vllm.__version__) # 应显示正确版本 ``` ## 三、模型部署 ### 启动推理服务 ```bash python -m vllm.entrypoints.openai.api_server \ --model /path/to/deepseek_model \ --tensor-parallel-size 2 \ --port 8000 ``` 关键参数说明: - `--tensor-parallel-size`:GPU并行数量 - `--trust-remote-code`:当模型需要自定义代码时添加 - `--max-model-len`:设置最大上下文长度[^2] ### API调用测试 ```bash curl http://localhost:8000/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "deepseek_model", "prompt": "如何解释量子纠缠?", "max_tokens": 150 }' ``` ## 四、关键注意事项 1. **系统兼容性** vLLM仅支持Linux/macOS系统,Windows用户需使用WSL2或容器化部署[^1] 2. **常见报错处理** - CUDA版本不匹配:`nvidia-smi`验证驱动版本,重装对应CUDA工具包 - 模型加载失败:检查模型目录结构是否符合HuggingFace格式 - 内存不足:启用`--swap-space 8`参数增加交换空间[^2] 3. **性能优化建议** - 启用`--quantization awq`进行8bit量化 - 使用`vLLM-Engine`实现动态批处理 - 配合NVIDIA Triton提升吞吐量 ```python # 示例:Python客户端调用 from vllm import LLM llm = LLM(model="deepseek_model") outputs = llm.generate(["AI的未来发展方向是"]) print(outputs[0].text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值