一、真实场景下落地RAG的十条建议
RAG无处不在、无孔不入,却又缝缝补补,且出现了诸如GraphRAG、多模态RAG、Deepresearch等许多变体。RAG的方案人手一份,但是依旧在实际落地过程中出现各类问题。
昨晚,老刘在A2M人工智能创新峰会预热线上分享中进行《RAG的花式变体及落地建议-GraphRAG or 多模态RAG or Deepresearch?》主题报告,讲了一些有趣的事情,在结尾的时候,给出了这10条建议,供各位参考:
1、不要为了上RAG而上RAG,尤其是NL2SQL,KBQA这种类型,之前解决的很好的就不要再折腾了。
2、不要为了上变体而上变体,GraphRAG、多模态RAG、DeepResearch等能不上就不要上,把最基本的RAG做出来就好。
3、通用的RAG是一种标品,标品从来都解决不了优化问题,要放弃这种思路。
4、RAG本身就是破布,是面向具体业务问题而做的补丁,要有这种意识,面向业务做RAG,而不是面向RAG做业务,具体case 具体分析,评估先行,可用的RAG一定是有很多路由逻辑的。
5、目前开源的RAG框架有很多,其意义其实并不是为了生产,而是为了快速做场景验证,要做开源框架祛魅
6、能自己动手写就动手写,RAG没多少复杂的东西,开源框架同质化,黑盒化,不利于做问题定位,要适当抛弃;
7、RAG本身就是无处不在的,它是一种框架,而不是一种单独的技术,更多时候还是一种工程架构
8、决定RAG好不好用的,不是RAG技术本身,而在于用户的问题域是否建模清楚,以及业务实现逻辑的设计。
9、落地总是二八原则,很多优化方案都是解决20%的长尾问题而设计的,这个需要我们弄清楚,需要衡量ROI投入产出比;
10、RAG的文档解析要做,但并不需要文档解析做到100%还原,这是一条歧路。应该投入,但不要过度关注。文档解析是手段,不是目的;
二、RAG中如何提升个性化?
RAG有一个发展方向,就是朝向个性化,例如最近的工作《A Survey of Personalization: From RAG to Agent》(https://arxiv.org/pdf/2504.10147)这个技术总结可以看看,介绍了如何在RAG的不同阶段(预检索、检索和生成)以及基于代理的个性化系统中有效地集成个性化信息。
主要用到的技术点在这:
1、预检索阶段的个性化
在预检索阶段,查询处理(Q)使用个性化信息(如查询重写或扩展)来精炼原始查询。
查询重写可以分为直接个性化查询重写和辅助个性化查询重写。直接个性化查询重写使用直接模型。辅助个性化查询重写则使用检索、推理策略和外部记忆。
2、检索阶段的个性化
在检索阶段,检索器(R)利用个性化信息(p)从语料库(C)中获取相关文档。检索过程可以引入索引、检索和后检索三个步骤。
索引阶段可以通过生成用户嵌入来组织知识库数据。检索阶段可以分为密集检索、稀疏检索、提示检索和其他方法。后检索阶段主要通过重排、摘要和压缩来改进检索结果。
3、生成阶段的个性化
在生成阶段,生成器(G)结合检索到的文档、任务特定的提示和用户偏好信息(p)来生成定制化的内容。个性化生成可以通过显式和隐式偏好注入来实现。
显式偏好注入包括直接集成提示、摘要增强提示和自适应提示。隐式偏好注入则通过参数高效微调和强化学习方法来实现。
4、从RAG到代理的个性化
个性化LLM代理系统动态地结合用户上下文、记忆和外部工具或API,以支持高度个性化和目标导向的交互。个性化理解、个性化规划和执行以及个性化生成是代理系统的关键组成部分。
个性化理解包括用户档案理解、角色理解和用户-角色联合理解。个性化规划和执行包括记忆管理和工具和API调用。个性化生成则强调与用户事实和偏好的对齐。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。