Agent爆火,催生了一大堆的Agent协议。刚好有一篇综述,进行了全面的对比分析,今天给家人们分享一下具体内容。
什么是 LLM Agent 和 Agent Protocol?
首先快速过一下基础概念。LLM Agent 不仅仅是能生成文本的大模型,它们更像是能自主决策、有记忆、会规划、还能调用外部工具(比如 API、数据库)来完成任务的智能系统。一个典型的 LLM Agent 通常包含:基础模型 (Foundation Model) 提供核心的理解和推理能力;记忆系统 (Memory Systems) 分短期和长期,保证对话连贯和知识积累;规划能力 (Planning) 把复杂任务拆解成小步骤;工具使用 (Tool-Using) 调用外部 API 或工具来弥补自身能力的不足;以及行动执行 (Action Execution) 与环境进行实际交互。
而 Agent Protocol 就是一套标准化的规则、格式和流程,用来规范 Agent 之间以及 Agent 与外部系统(如数据、工具)的沟通。相比传统的 API、GUI 或 XML 交互方式,Agent Protocol 在效率、操作范围、标准化和 AI 原生性上都有明显优势,是构建复杂、动态、可扩展 Agent 生态系统的关键。它们就像 Agent 世界的通用语言,能打破不同厂商、不同架构 Agent 之间的壁垒,实现互操作性、安全治理,甚至催生出超越单个 Agent 能力的集体智能。
Agent 互联网生态系统的分层架构
Agent Protocol :如何分类?
面对五花八门的 Agent Protocol,这篇综述首次提出了一个清晰的二维分类框架:
- 按交互对象 (Object Orientation):分为 Context-Oriented (面向上下文) 和 Inter-Agent (面向 Agent 间) 两种。
- 按应用场景 (Application Scenario):分为 General-Purpose (通用) 和 Domain-Specific (特定领域) 两种。
面向上下文的协议 (Context-Oriented Protocols)
这类协议主要解决 Agent 如何从外部世界(数据、工具、服务)获取完成任务所需信息(上下文)的问题。以前主要靠针对特定模型微调函数调用能力,但缺乏标准导致接口五花八门,开发维护成本高。
- 通用协议代表:MCP (Model Context Protocol) 由 Anthropic 提出,目标是建立一个连接 LLM Agent 和外部资源的通用、开放标准。它采用 Client-Server 架构,将工具调用与 LLM 响应解耦,解决了不同模型和工具提供商带来的碎片化问题,提高了集成性、可扩展性和安全性(比如避免敏感信息直接暴露给云端 LLM)。
- 特定领域协议:agents.json 这是一个开源的、机器可读的规范,构建在 OpenAPI 之上,让网站可以声明 AI Agent 兼容的接口、认证和多步工作流,方便 Agent 理解和调用网站 API。
面向 Agent 间的协议 (Inter-Agent Protocols)
随着任务越来越复杂,单个 Agent 能力有限,多 Agent 协作成为趋势。这类协议就是为了规范 Agent 之间的沟通、发现和协作。
-
通用协议群雄逐鹿:
-
- ANP (Agent Network Protocol):由开源社区推动,愿景是构建一个开放、安全、高效的 Agent 互联网络(“Internet of Agents”),使用 W3C DID 进行身份认证,并有元协议层让 Agent 能自主协商沟通方式。
- A2A (Agent-to-Agent):Google 提出,面向企业级 Agent 协作,强调简单性(复用 HTTP/JSON-RPC/SSE)、企业级就绪(安全、可追溯)、异步优先和多模态支持。
- AITP (Agent Interaction & Transaction Protocol):NEAR 提出,利用区块链技术,专注于跨信任边界的 Agent 安全通信、协商和价值交换。
- AConP (Agent Connect Protocol):Cisco 提出,定义了一套标准的 API 来调用和配置 Agent,主要关注 Agent 的生命周期管理。
- AComP (Agent Communication Protocol):IBM 提出,旨在标准化实用的通信功能,促进自动化和协作,目前还在设计阶段。
- Agora:牛津大学提出,试图解决 Agent 通信中的“三难困境”(多样性、效率、可移植性),让 LLM Agent 能根据场景自主协商和选择通信协议(结构化协议、LLM 生成的例程、自然语言)。
-
特定领域协议:针对特定场景进行优化。
-
- *人机交互 (Human-Agent)**:如 **PXP** 协议促进人与 Agent 之间的可理解交互;*LOKA 协议构建去中心化的身份、问责和伦理框架。
- *机器人-Agent 交互 (Robot-Agent)**:如 **CrowdES** 用于模拟真实人群行为,供机器人交互;*SPPs 用于匿名机器人间的分布式定位。
- *系统-Agent 交互 (System-Agent)**:如 **LMOS** 提供构建 Agent 互联网的基础架构;*Agent Protocol 定义了控制台与 Agent 交互的通用标准。
一个有意思的观点是,面向上下文和面向 Agent 间的协议可能正在趋同。可以把工具看作低自主性 Agent,而其他 Agent 也可以看作高自主性的“工具”。未来这两类协议可能会更加融合。
如何评价一个 Agent Protocol?
评价协议不能只看当前功能,因为它们迭代很快(比如 MCP 就快速增加了 HTTP 支持和认证)。这篇综述借鉴了互联网协议的评估经验,提出了七个关键维度:
- 效率 (Efficiency):通信速度快、资源消耗少。关注延迟、吞吐量、资源利用率(包括 LLM 的 token 消耗)。
- 可扩展性 (Scalability):随着 Agent/工具/网络规模增长,性能是否稳定。关注节点扩展、链路扩展、能力协商的效率。
- 安全性 (Security):可信交互,包括身份认证、访问控制、数据保护。关注认证方式多样性、权限控制粒度、上下文脱敏机制。
- 可靠性 (Reliability):通信稳定、准确、容错。关注丢包重传、流量和拥塞控制、持久连接。
- 可扩展性 (Extensibility):能否在不破坏兼容性的前提下增加新功能。关注向后兼容性、灵活性、定制与扩展能力。
- 可操作性 (Operability):协议实现、管理和集成的难易程度。关注代码量、部署配置复杂度、可观察性。
- 互操作性 (Interoperability):能否在不同平台、系统、网络环境间无缝通信。关注跨系统/浏览器兼容性、跨网络/平台适应性。
论文还通过 MCP 的版本迭代和从 MCP 到 ANP/A2A 的演化案例,说明了协议在实践中是如何平衡功能、性能和安全等多个目标的。
实战
为了更直观地理解不同协议,综述里边用了一个“规划 5 天北京到纽约旅行”的案例对比了 MCP, A2A, ANP 和 Agora:
- MCP:像个大总管。一个中央 Agent (MCP Travel Client) 负责调用所有外部服务(机票、酒店、天气),然后汇总信息生成计划。优点是简单可控,缺点是中心化依赖高,不易扩展。
- A2A:像个部门协作。任务被分配给专门的 Agent(交通、住宿、活动),这些 Agent 可以直接相互沟通(比如机票 Agent 直接问天气 Agent 获取信息),最后由一个协调者汇总。更灵活,适合企业内复杂协作。
- ANP:像跨公司合作。不同领域的 Agent(航空公司、酒店、天气网站)通过标准化的协议进行跨域交互和协商。适合独立 Agent 之间基于明确接口的协作。
- Agora:像个智能翻译官。先用自然语言理解用户需求,然后生成标准化的协议分发给各个专业 Agent(机票、酒店、天气、预算)。将自然语言处理与 Agent 执行分离,适应性强。
这个案例展示了不同协议的设计哲学和适用场景:MCP 适合流程固定的任务;A2A 适合需要灵活内部协作的场景;ANP 擅长跨域标准化交互;Agora 则聚焦于从自然语言到协议的智能转换。
未来展望:Agent Protocol 路向何方?
Agent Protocol 的发展才刚刚开始,未来充满想象空间:
-
短期 (From Static to Evolvable):
-
- 需要更完善的评估基准和测试平台。
- 隐私保护协议将越来越重要,如何在协作中保护敏感数据是个关键问题。
- 可能出现Agent Mesh Protocol,支持群组通信,提高协作效率。
- 可演化协议,让 Agent 能像学习技能一样学习、组合甚至创造协议。
-
中期 (From Rules to Ecosystems):
-
- 将协议知识内置到 LLM 参数中,让 Agent “天生就会”遵循协议,但这会牺牲一些灵活性。
- 分层协议架构,类似网络协议栈,解耦不同层面的通信关注点,提高模块化和互操作性。
-
长期 (From Protocols to Intelligence Infrastructure):
-
- 探索大规模 Agent 网络中的集体智能涌现和Scaling Laws。
- 可能诞生专门的Agent 数据网络 (ADN),作为优化 Agent 间通信和协调的基础设施。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。