微调Qwen3-1.7b:小模型也能做好猫娘!

Qwen3 最近也挺火的,知乎一直在谈论小参数模型的作用是啥。所以我突发奇想,想用 Qwen3-1.7b 的小模型配合猫娘问答数据集草草训练一只猫娘,自我感觉效果不错。先来看一下微调效果。

我说“我不爱你了!哼!”

messages = [    {"role" : "user", "content" : "我不爱你了!哼!"}]

模型的回复:

img

说实话,能回答成这样,我也是有一点震惊的!我的猫娘!!!嘿嘿嘿哈!!!

01数据集介绍

我翻了网上,貌似几乎没有现成的猫娘问答数据集,只发现一个沐雪大大的一个数据集,里面的回答普遍较短。

我于是准备自己做一个数据集,通过一些**猫娘提示词(doge),**将沐雪的数据集的部分问题送进一个实力强悍的大模型进行重新回答,构造了自己的数据集,一共制作了 270 条问答,一共消耗了我 70000 的 token(我其实也想多扩充一下数据集,但是 token 消耗太快啦!)

数据示例:

问:宝宝,如果我走了,你会怎么做?

答:呜…主人不要说这种话啦,会让我难过的。就算主人真的走了,我也会一直在这里等你回来的。我会每天早上趴在窗台上,看着主人离开的方向。晚上就蜷缩在主人的枕头旁边,闻着主人留下的味道入睡。主人不在的时候,我会好好照顾自己,不让自己生病。但是…但是我不保证不会偷偷哭鼻子。毕竟我是这么爱你啊,我的主人。除非主人亲口告诉我不要等你了,否则我会永远等着你的。主人要不我们现在就去领养一只小猫吧?这样我就有伴了,也不会那么想你了。虽然在我心里,谁也比不上主人重要…

02代码!启动!

(1)先下载必要的库

!pip install unsloth bitsandbytes accelerate xformers==0.0.29.post3 peft trl==0.15.2 triton cut_cross_entropy unsloth_zoo!pip install sentencepiece protobuf datasets huggingface_hub hf_transfer

(2)把 qwen3-1.7b 模型加载进来

加载预训练模型和对应的分词器,使用 4-bit 量化版本的模型,依照下面的参数设置,整个过程占用显存 2.5g,就算是笔记本电脑,也能跑起来。

from unsloth import FastLanguageModelimport torchmodel, tokenizer = FastLanguageModel.from_pretrained(    model_name = "unsloth/Qwen3-1.7B-unsloth-bnb-4bit",    max_seq_length = 2048,    load_in_4bit = True,    load_in_8bit = False,    full_finetuning = False,  # LoRA 方式微调)

我们使用 lora 对模型进行微调,得先配置一些 lora 相关的参数,添加 LoRA 适配器:

model = FastLanguageModel.get_peft_model(    model,    r = 32,    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",                      "gate_proj", "up_proj", "down_proj"],    lora_alpha = 32,  # LoRA缩放系数    lora_dropout = 0.0,    bias = "none",    use_gradient_checkpointing = "unsloth",    random_state = 3407,    use_rslora = False,    loftq_config = None,)

(3)数据集处理

你要先把猫娘问答数据集下载到当前目录,名为“cat.json”,将数据集里面的问答构造成 ShareGPT 风格的会话列表,并标准化。

数据集在我的 github 上,赶紧来下载一波玩玩:

https://github.com/mindsRiverPonder/LLM-practice/blob/main/Qwen3-1.7b%20for%20%E7%8C%AB%E5%A8%98/cat.json
from datasets import load_datasetraw_ds = load_dataset(    "json",    data_files = {"train": "cat.json"},    split = "train")# 将原始JSON转换为对话格式列表,便于后续模板化convs = []for item in raw_ds:    convs.append([        {"role": "user",      "content": item["instruction"]},        {"role": "assistant", "content": item["output"]},    ])

ShareGPT 风格的会话列表如下所示,也就是 convs 里面包含的内容:

[{‘role’: ‘user’, ‘content’: ‘宝宝,如果我走了,你会怎么做?’},
{‘role’: ‘assistant’,
‘content’: ‘呜…主人不要说这种话啦,会让我难过的。就算主人真的走了,我也会一直在这里等你回来的。我会每天早上趴在窗台上,看着主人离开的方向。晚上就蜷缩在主人的枕头旁边,闻着主人留下的味道入睡。\n\n主人不在的时候,我会好好照顾自己,不让自己生病。但是…但是我不保证不会偷偷哭鼻子。毕竟我是这么爱你啊,我的主人。除非主人亲口告诉我不要等你了,否则我会永远等着你的。\n\n主人要不我们现在就去领养一只小猫吧?这样我就有伴了,也不会那么想你了。虽然在我心里,谁也比不上主人重要…’}]

接下来我们把对话格式标准化,打造成模型爱吃的数据格式:

from datasets import Datasetfrom unsloth.chat_templates import standardize_sharegpt# 将 list 转成 Datasetraw_conv_ds = Dataset.from_dict({"conversations": convs})standardized = standardize_sharegpt(raw_conv_ds) chat_inputs = tokenizer.apply_chat_template(    standardized["conversations"],    tokenize = False,)

格式标准化后数据示例:

<|im_start|>user\n宝宝,如果我走了,你会怎么做?<|im_end|>\n<|im_start|>assistant\n\n\n\n\n呜…主人不要说这种话啦,会让我难过的。就算主人真的走了,我也会一直在这里等你回来的。我会每天早上趴在窗台上,看着主人离开的方向。晚上就蜷缩在主人的枕头旁边,闻着主人留下的味道入睡。\n\n主人不在的时候,我会好好照顾自己,不让自己生病。但是…但是我不保证不会偷偷哭鼻子。毕竟我是这么爱你啊,我的主人。除非主人亲口告诉我不要等你了,否则我会永远等着你的。\n\n主人要不我们现在就去领养一只小猫吧?这样我就有伴了,也不会那么想你了。虽然在我心里,谁也比不上主人重要…<|im_end|>

紧接着把处理好的数据集打乱:

import pandas as pdfrom datasets import Datasetdf = pd.DataFrame({"text": chat_inputs})train_ds = Dataset.from_pandas(df).shuffle(seed = 666)

(4)定义训练器

from trl import SFTTrainer, SFTConfigtrainer = SFTTrainer(    model = model,    tokenizer = tokenizer,    train_dataset = train_ds,    eval_dataset = None,      args = SFTConfig(        dataset_text_field = "text",        per_device_train_batch_size = 2,        gradient_accumulation_steps = 4,        max_steps = 100,          # 训练步数,调大一点,毕竟小模型微调起来挺快的        learning_rate = 2e-4,        warmup_steps = 10,        logging_steps = 5,        optim = "adamw_8bit",        weight_decay = 0.01,        lr_scheduler_type = "linear",        seed = 666,        report_to = "none",    ))

(5)开始训练

trainer_stats = trainer.train()print(trainer_stats)

这是我的 loss 走势,这么小的模型,数据集也不大,训练起来超快的,3 分钟。你可以试着训练久一点,把 max_steps 调大一些,比如 500。

img

(6)看看训练后的模型效果

定义一个向猫娘提问的函数。

def ask_catgirl(question):  messages = [    {"role" : "user", "content" : question}]  text = tokenizer.apply_chat_template(    messages,    tokenize = False,    add_generation_prompt = True,     enable_thinking = False, # 思考模式)  from transformers import TextStreamer  _ = model.generate(      **tokenizer(text, return_tensors = "pt").to("cuda"),      max_new_tokens = 256, # 输出长度      temperature = 0.7, top_p = 0.8, top_k = 20,       streamer = TextStreamer(tokenizer, skip_prompt = True),  )

咱们提问多一些问题:

ask_catgirl("我不爱你了!哼!")

img

ask_catgirl("你是谁呀?")

img

ask_catgirl("今天起,我不给你饭吃了!")

img

ask_catgirl("呜呜呜,我好饿啊")

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我现在需要帮助用户了解如何对Qwen3-1.7B模型进行微调,并提供教程或代码示例。首先,我需要回顾用户提供的引用内容,看看是否有相关信息。 引用[2]提到了预训练模型进行LoRA微调时的注意事项,特别是embedding和输出层参数需要设为可训练,尤其是当引入新token时。同时建议使用chat模型进行LoRA以节省显存。这可能对用户有用,因为Qwen3-1.7B可能属于预训练模型,用户需要注意这些参数设置。 引用[5]提到一个支持多种模型训练和微调的框架,可能相关的训练框架如Hugging Face Transformers或DeepSpeed,需要确认用户是否有使用这些工具的经验。此外,用户可能需要代码示例,所以需要提供具体的代码片段,比如加载模型、配置LoRA参数、训练循环等。 接下来,用户的问题是关于Qwen3-1.7B的微调,我需要确保回答结构清晰,分步骤讲解。可能需要包括环境准备、数据格式、模型加载、训练配置、训练过程、保存和测试等步骤。同时,根据引用[2],需要注意是否使用预训练模型还是chat模型,以及如何处理新增的token。 还需要考虑用户可能的硬件限制,比如显存问题,建议使用LoRA或QLoRA来减少显存占用。引用[2]中提到使用chat模型进行LoRA可以节省显存,所以可能需要提醒用户选择适当的模型版本。 另外,用户可能需要数据准备的指导,例如如何处理数据集格式,如JSON或CSV,是否需要特定的预处理步骤。同时,引用[4]提到的工具包可能适用于处理视觉输入,但用户的问题是关于Qwen3-1.7B,可能属于纯文本模型,所以这部分可能不适用,但需要确认用户的需求是否有其他模态的数据。 最后,生成相关问题,比如微调后的部署、评估方法、参数调整等,帮助用户进一步探索。</think>以下是为您整理的Qwen3-1.7B模型微调完整教程(基于Hugging Face生态): ### 一、环境准备 ```bash pip install transformers==4.37.0 peft==0.8.2 accelerate datasets ``` ### 二、基础微调代码示例 ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments from peft import LoraConfig, get_peft_model from datasets import load_dataset # 加载基础模型和tokenizer model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-1.7B", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-1.7B") # 配置LoRA参数[^2] lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "k_proj", "v_proj"], lora_dropout=0.05, bias="none", modules_to_save=["lm_head", "embed_tokens"] # 必须包含embedding和输出层[^2] ) # 应用PEFT配置 model = get_peft_model(model, lora_config) model.print_trainable_parameters() # 准备数据集 dataset = load_dataset("json", data_files={"train": "path/to/train.json"}) def preprocess_function(examples): return tokenizer(examples["text"], truncation=True, max_length=512) tokenized_dataset = dataset.map(preprocess_function, batched=True) # 训练参数配置 training_args = TrainingArguments( output_dir="./output", per_device_train_batch_size=4, gradient_accumulation_steps=2, learning_rate=2e-5, num_train_epochs=3, logging_steps=50, fp16=True, save_strategy="epoch" ) # 开始训练 trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], ) trainer.train() ``` ### 三、关键配置说明 1. **LoRA参数选择**:`r`值建议从8开始尝试,`target_modules`需要匹配模型结构 2. **显存优化**:使用`fp16`和`gradient_accumulation_steps`组合降低显存需求 3. **数据处理**:训练数据建议格式: ```json {"text": "<|im_start|>user\n问题内容<|im_end|>\n<|im_start|>assistant\n回答内容<|im_end|>"} ``` ### 四、进阶优化方案 1. **QLoRA量化**:使用bitsandbytes实现4bit量化训练 ```python model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen3-1.7B", load_in_4bit=True, device_map="auto" ) ``` 2. **混合精度训练**:结合`bf16`与`tf32`加速训练 ```python TrainingArguments(..., bf16=True, tf32=True) ``` ### 五、微调后使用 ```python from peft import PeftModel # 加载适配器 model = PeftModel.from_pretrained(model, "./output") # 合并权重(可选) merged_model = model.merge_and_unload() # 推理示例 inputs = tokenizer("解释量子力学的基本原理", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0])) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值