DDP分布式训练中遇到的一些问题

1:所有forward的输出必须参与到loss计算并回传

2:类似于layer_norm这样的操作是无需进行分布式通信的,也无法进行分布式通信,所以在DDP的时候必须把find_unused_parameters设置为True

3:当报错形式为如下时,即在某一个进程的显卡上没有接收到梯度

这个时候可以在命令行前面加上TORCH_DISTRIBUTED_DEBUG=DETAIL, 这样,将找出具体时哪些参数没有接收到梯度,以此更好的调整代码 

 

4:关于0号卡的显存为什么远高于其他卡

一方面是需要设置torch.cuda.set_device(rank)和torch.cuda.empty_cache(),一般设置在dist.init_process_grop之后(个人习惯),至于为什么,参考一下这篇文章

(4条消息) Pytorch清空显存缓冲区(torch.cuda.empty_cache)_pytorch 释放显存_hxxjxw的博客-CSDN博客

但实验发现,重点其实在torch.cuda.set_device(rank),所以DDP一定要加这个代码,即使已经用了CUDA_VISIBLE_DEVICES

另一方面是要保证下载预训练模型的时候,torch.load()的时候加上map_location="cpu"

遇到在补充.......... 

### 深度学习分布式训练原理 #### 分布式训练的概念 分布式训练是指通过多个处理器(CPU/GPU/NPU/XPU等)并行执行模型训练任务,从而加速整个训练过程。这种方式不仅限于同一台机器上的多核或多GPU环境,还可以扩展到跨越不同地理位置的集群环境中[^2]。 #### 主要方法和技术 为了有效地实施这种类型的训练,在实践中通常采用两种主要策略之一: - **数据并行(Data Parallelism)** 数据集被分割成若干子集分发给各个工作节点处理。每个节点拥有完整的模型副本,并独立地对自己负责的那一部分输入样本进行前向传播和反向传播操作。之后再通过某种机制汇总梯度更新全局权重参数。这种方法简单易行,适合大多数场景下的应用需求[^1]。 - **模型并行(Model Parallelism)** 当遇到极其庞大复杂的网络结构以至于无法完全加载至单一设备内存时,则可考虑将不同的层或模块划分开来分布部署。此时各计算单元只保存局部状态信息并与相邻部件交换必要消息共同完成一次迭代运算。不过其配置相对复杂些,适用于特定条件下优化性能瓶颈的情况[^3]。 #### 关键技术组件 实现高效稳定的分布式深度学习离不开以下几个方面支持: - **通信协议** 节点间需遵循统一的标准来进行有效沟通交流。比如MPI(Message Passing Interface),作为一种广泛接受的消息传递接口规范,提供了丰富的函数库用于构建高性能应用程序间的互联架构;而针对更高效的RPC(Remote Procedure Call)调用方式也有专门的设计方案如gRPC等。 - **同步/异步更新机制** 对于前者而言,所有参与者都得等到彼此都完成了当前轮次的学习后再集体推进下一步动作;后者则允许个体按照自身进度灵活调整而不必等待他人,虽然可能引入额外开销但有助于提高整体吞吐量特别是面对大规模异构资源池的情形下表现出色。 - **负载均衡与容错恢复功能** 动态监测系统内部的工作负荷状况及时作出相应调配措施防止某些成员过载崩溃影响全局稳定性;同时具备良好的错误检测纠正能力确保即使遭遇突发情况也能迅速恢复正常运作减少损失风险。 ```python import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP def setup(rank, world_size): dist.init_process_group("nccl", rank=rank, world_size=world_size) model = YourModel() ddp_model = DDP(model) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值