DeepLab系列

DeepLab是Google团队一系列semantic image segmentation的paper,截止2018年,共4篇,奉为经典,下面是笔记。

DeepLab V1: AFully Connected CRFs

ICLR 2015.

Abstract: 当前的图像分割CNN是根据classification这种high-level semantics改编的,但CNN有invariance特点,故会丢失localization信息,即无法对像素点精确定位语义(low-level semantics)。而本文提出的model,是CNN和PGM(概率图模型)的结合,对CNN最后一层加上fully connected CRFs,使得分割更精确。
取得的accuracy不详述了,另外通过network re-purposing和hole algorithm,使得处理时间很快。

这不禁让我产生疑问:
- high-level和low-level semantics区别在哪里?CNN的invariance是什么?平移不变性?那和high-level,hierarchical abstractions of the data什么关系?

解答:
- 所谓high low的界定是模糊的,大体上low-level是local,人肉眼能识别的最小单位,如十几个像素点构成的line,edge等,而很多个low-level features组成了high-level feature,给人以global info。故整个vision recognition是个hierarchical model,从识别许多个low-level,一层又一层,往上提高level,然后组成high-level。而CNN实现了这个流程,有很棒的high-level vision,但牺牲了low-level(因为Localization),故分割需要改进。https://www.zhihu.com/question/264702008
- 我突然理解了不变性对图像分割的制约。因为不变性是指图像的语义信息无论怎么平移,最终识别的分类是一样的,而这丢失了位置信息。
- 另外,卷积本身具有平移不变性,只不过是激活了不同区域的feature map,交换最终的fc层的元素,但不影响判断。pooling层也有不变性。(此处略)https://www.quora.com/How-is-a-convolutional-neural-network-able-to-learn-invariant-features

Introduction的结尾作者提到了模型的三大优点:speed, accuracy, simplicity.

Dilated Conv & Receptive Field

这里写图片描述

第一个是图像尺寸大小公式,由等差数列项数公式即得。

关键是第三个公式:r表示receptive field。我们直接在原始图像上考虑,上一层的感受野(即在原始图像上)为 rin r i n ,其在原始图像上的stride为 jin=Πi<insi j i n = Π i < i n s i ,故由等差数列求和公式即得。

感受野的通项公式为: r

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值