吴恩达机器学习——逻辑回归和分类算法

本文介绍了吴恩达的机器学习课程中的逻辑回归和分类算法。通过实例解释了如何利用矩阵运算求解theta,并讨论了线性回归在分类问题上的局限性。接着引入逻辑回归,其目标函数值限定在0到1之间,表示概率。通过g(z)函数实现了0-1分类,并展示了如何根据训练集计算参数theta,以确定决策边界。最后,文章提到了代价函数的优化,确保其在逻辑回归中的凸性,以及梯度下降法在求解theta中的应用。
摘要由CSDN通过智能技术生成

 

高效使用软件

如下所示,是一个函数,这是一个求theta和x的积的和的公式,这个问题我们可以轻松地通过矩阵的方式解决。

 

将theta和x以如下形式表示,theta和x的矩阵的积就是这个函数的结果。

 

求解theta的值

 

进行逻辑分解:

Theta(i) = theta(i) – aβ

β =

 

然后进行进一步分解:

这个部分可以看做是两个矩阵的积: 矩阵的积

依次这样慢慢划分,就能够实现这个theta的求解。

 

 

 

分类算法

 

Y = {0,1}

0表示负类,负类表示缺少某种东西

1表示正类,正类表示永远某种东西

 

我们现在只研究划分成两个类的问题(即二元分类问题)

这是一个简单的例子,肿瘤大小与是否

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值