一个小白学习Python的经验和教训

“ 非计算机专业,学python到底是为了什么?”
很多人都有这个疑问。

作为一个小白学习Python的过来人,我结合自己的经验和教训,和大家分享我的答案——因为想拥有一支哈利破特的魔法棒。

希望能帮到那些在职场中同样遭遇发展瓶颈、想通过提升工作效率和自己的价值做出改变的人。

在这里插入图片描述

01 用对的方法做事

刚一听“编程”,很多人都会第一时间想到“工程师”。

似乎只有学习计算机,在互联网行业的人才应该学编程。

但事实呢?

我先和大家讲一个我自己的经历。

我毕业后刚进入一家企业时,部门的一个大姐,做数据统计竟然还用计算器,我问她为什么不用excel表的自动公式啊?

她说,不会,而且计算器也很好,就是慢一点,她认真核对就是了,以前一直是这么工作的。

刚开始的确差距不明显,但是随着业务量增大,手动计算和公式计算的效率和正确率的差距,可想而知。

后来我成了她的主管,再后来,她因为效率太低,适应不了工作节奏,离职回家带孩子了。

每个人的职业道路的长度和宽度,也许在你决定使用什么工具和方法做事时,就已经决定了。

未来,人工智能在替代人类的时候,一定也不会提前打招呼。所以有时候,用对的方法做事,比完成眼前的任务更重要。

过去,office是职场基本技能,它决定了你的办公效率,未来,就是要掌握一门机器语言。

在这里插入图片描述

这个未来其实并不遥远,它甚至在很多领域都已经悄悄到来。

稍微关注一下各大招聘网站,你就能发现大量信息,很多看上去与编程无关的岗位都要求标明会Python优先。

02 最简洁、最好学的魔法

看到这么多需求,Python到底是什么?能干什么?

拥有一支哈利波特的魔法棒,挥一挥就能perfect地完成任务,你不想吗?

让自己的工作效率提高几倍

不用每天熬夜加班,就能轻松完成任务

处理海量数据,又好又快,还0差错率

总能交出让领导和甲方爸爸满意的成果或方案…

编程就是一个活跃在现实世界里的魔法。而Python就是所有魔法里,最强大高效还简单易学的。

我为什么选择Python?

1. 易读、易维护

Python在设计上坚持“优雅、明确、简单”,是最接近人类语言的计算机语言,也更易读、易维护。

2. 需求大

Instagram、豆瓣、知乎在内的很多互联网公司都将 Python 作为了主要编程语言,百度、新浪、搜狐、淘宝等互联网企业都在利用Python,对Python的人才需求很大。

3. 发展空间大

在行为收集和数据采集方面具有明显优势,随着人工智能和大数据的发展和普及,Python的用途越来越广,发展空间越来越大。

4. 简单易学

语法简单,代码可读性高,容易入门,是小学生也可以上手学习的计算机语言。一个程序用C语言需要1000行的代码,用JAVA需要100行,但是Python可能只需要20行。

03 性价比最高的自我投资

于是,我决定每天花一小时学Python。

一个月后,就用Python写脚本,30秒就可以筛选和整理成千上万条excel表中的信息,完成以往几个小时都做不完的工作。

在这里插入图片描述

▲几千条资料几秒钟瞬间抓取

工作效率提高几倍,再也不用盯着excel表加班、熬夜。除此之外,我还可以全网定向获取资料和数据,研究行业最新案例,拆解和分析,提高自己的工作质量。

学Python大概是毕业后,我为投资自己做的性价比最高的一件事,尽管我从来没想过做程序猿,以后应该也不会去抢他们的饭碗。

因为学Python让我花费不多的精力和时间,就可以在某些方面,获得超越其他人10倍的能力,就好像背后拥有了一个强大的数据团队。

Python帮我将人力完成的事转化为借助自动化完成,将一分钟掰成1000分钟来使用,那些重复、枯燥的工作,再也不用占用大量时间。还能帮我把一些以往很难实现的idea通过Python一一实现。

后来借助这项数据处理的基础技能,我跳槽成功,并且离开传统行业,进入了全新的互联网行业。

真的特别感谢Python,帮我增加了自己的价值,超越了职业发展瓶颈。

04 我学习Python的经验教训

其实,在职场中很多陷入职业发展瓶颈的人,都不知道自己到底需要什么?

盲目地学习,不仅浪费时间,还容易半途而废,更加打击自信心。

图片

所以我结合自己学习Python的经验和教训,帮大家少走一些弯路:

1. 一定要问问自己,我为什么要学习python?

想通过Python掌握爬虫、数据分析、机器学习,又或者其它?

带着目标去学习,可以让你事半功倍。

比如,如果你是做数据分析工作的,学python的初衷就可能是想利用python强大灵活的数据分析能力。

如果你是行政、人事,或者财务,可能仅仅excel数据收集、筛选、处理这一项,Python就能帮你的大忙。

我帮大家整理了一些可以用到Python的岗位(包括但不限于这些),大家不妨对号入座,带着目标去学习。

运营岗位

通过Python可以抓取用户网上的浏览信息、点击行为等,掌握一手用户数据并进行科学分析,制定高效运营策略。

金融行业

用Python爬虫可以帮客户批量下载上市公司财报,独立搭建了一套金融量化投资系统。

财务专业

用Python完成庞大的税务数据统计,做公司整体财务分析报表,以及第二年的支出预测。

行政岗位

用Python完成公司资产盘点、整理和记录,自动生成考勤以及考勤后的薪资计算等,轻松实现办公自动化。

设计岗位

用Python快速全网搜索和抓取最新的图、最适合的素材和最有创意的案例,让甲方爸爸一次就满意。

2. 选择适合自己的课程

市面上有很多关于Python的书籍和网络教程,如果你是初学者,建议你务必选择适合0基础小白的课程,千万不要选语言枯燥无趣的课程,学习的痛苦相信大家都经历过。

我曾经也买过书,也听过网上的课,自学了一段时间就放弃了。

可能因为我没有计算机基础,也不是学霸,平时还有正常工作要做,所以每天能学的时间不多。稍微遇到一个知识点有疑问,自己不能马上解决,就容易卡在那儿。这种情况一多就很容易产生挫败感,没坚持下来。

后来遇到享学教育才真正学会Python。所以一定要找课程生动有趣、简单易操作、助教老师可以随时答疑的。

学习最重要的是坚持,选择适合自己的课程,然后坚持下来。

3. 怎么学习Python?

制定学习计划

学习python切忌拉很长战线,因为容易倦怠。

根据我学习的经验,用1~2个月的时间,每天1个小时左右,效果最好。

当然我们班也有每天半小时,就能轻松拿下课程的同学。大家根据自己的学习情况调整就好。

多做练习

输出是最好的输入。编程语言虽然注重逻辑,但更需要学习者不断地动手敲代码。

所以无论你为了什么学习都要多做练习,除了课程的作业之外,还可以结合自己的工作需求,做一些小尝试。一旦自己的一个idea实现了,就会特别有成就感,能激励你更好地学下去。

不懂就问

遇到不懂的一定及时问助教老师。不要自己死抠,他们一句话就能点醒你,节省不必要的时间。

经验丰富的助教老师还可以在职业规划上给你一些宝贵的建议。毕竟,学会不是目的,知道怎么用,用在哪里才行。

借助监督机制

惰性每个人都有,可以借助在社交平台打卡、做自己的学习课程表,或者多和班级群的班主任、同学们交流,借助外力来督促自己学习。

学习环境有时候比学习能力更重要。

最后,希望我学习Python的这些经验和教训能帮到大家。

祝大家都能通过学习Python让自己提高工作效率,告别加班熬夜,让自己增值,开启全新职业生涯!

资料分享

最后,小编也给大家分享一份Python学习资料,里面的内容都是适合零基础小白的笔记和资料,如果需要的话扫描下方二维码免费获得,让我们一起学习!

读者福利:知道你对Python感兴趣,还准备了这套python学习资料

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等学习教程。带你从零基础系统性的学好Python!

零基础Python学习资源介绍

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)

在这里插入图片描述

👉Python必备开发工具👈

在这里插入图片描述
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果。
在这里插入图片描述

👉面试刷题👈

在这里插入图片描述
在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取
在这里插入图片描述

### 关于Verilog的学习路径 对于初学者来说,掌握Verilog HDL的基础语法是非常重要的。这包括但不限于模块定义、端口声明、数据类型、时延控制、`assign`语句、`initial`语句、`always`语句等内容[^2]。通过这些基础概念的学习,可以构建简单的数字电路模型并进行仿真测试。 当具备一定Verilog编程经验之后,可以通过实践项目加深理解。例如尝试实现一些基本组合逻辑电路(如加法器)、时序逻辑电路(如计数器),并通过波形观察其行为特性。此外,在这个过程中还可以熟悉EDA工具链的操作流程,比如ModelSim用于仿真的设置方法等[^1]。 ### 如何从Verilog过渡到SystemVerilog 随着技术的发展,许多公司逐渐采用SystemVerilog作为主要开发语言之一来进行复杂芯片的设计与验证工作。虽然两者存在一定的相似之处,但也有很多不同点需要注意: #### 基础差异对比 - **设计方面**:尽管都可以完成硬件描述的任务,但由于历史原因,目前大多数情况下仍倾向于使用传统的Verilog RTL代码来表达具体电路结构;而SystemVerilog则因其丰富的高级特性更多应用于高层次抽象建模上。 - **验证领域优势明显**:相比起纯RTL级描述能力有限的传统版本而言,后者增加了大量专门针对验证场景优化的新特性——例如面向对象支持、随机激励生成机制等等[^3]。 #### 实际迁移策略建议如下: 1. 首先巩固好现有基于Verilog的知识体系; 2. 开始接触SystemVerilog新增的概念技术手段,特别是那些专属于该标准独有的部分(如class,class-based testbenches,assertions etc.) ; 3. 尝试逐步将原有项目的某些组件或者子系统迁移到新平台上来运行比较效果; 4. 不断积累实战案例分析总结经验教训直至完全熟练运用为止. 值得注意的是,在实际工作中可能会遇到需要同时维护两种风格混杂在一起的情况,所以也要学会灵活切换思维方式适应不同的需求环境. ### 推荐B站上的学习资源 以下是几个可能对你有所帮助的视频系列链接地址(假设它们存在于哔哩哔哩网站上): - 【零基础学FPGA】第X讲 - Verilog入门指南 (https://www.bilibili.com/video/BVxxxxxx) 这套课程非常适合完全没有电子工程背景知识的朋友快速上手了解整个学科概貌. - SV高手之路 | SystemVerilog深入浅出讲解 (https://space.bilibili.com/UP主ID/videos?tid=标签ID&pn=页码) 如果已经有一定理论功底想要进一步提升技能水平的话可以选择观看此类进阶型教学片集. 记得结合官方文档手册以及在线社区讨论区共同进步哦! ```python # 示例Python脚本展示如何解析CSV文件 import csv def read_csv(file_path): with open(file_path, newline='') as csvfile: reader = csv.DictReader(csvfile) for row in reader: print(row['Column Name']) read_csv('example.csv') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值