AgentBeach
AgentBeach框架
首先来看 AgentBeach,由来自清华大学、俄亥俄州立大学和加州大学伯克利分校的研究者设计的一个测试工具,AgentBench 包括 8 个环境:
- 操作系统(OS):测试 LLM 在 bash 环境中执行文件操作和用户管理等任务的能力。
- 数据库操作(DB):评估 LLM 使用 SQL 对指定数据库执行操作的能力。
- 知识图谱(KG):检验 LLM 利用工具从知识图谱中提取复杂信息的能力。
- 卡牌对战(DCG):考察 LLM 作为玩家,依据规则和当前状态进行卡牌对战策略决策的能力。
- 情景猜谜(LTP):在这个游戏中,LLM 需要针对谜题提出问题,以猜测答案,这能够测试 LLM 的横向思维能力。
- 居家场景(HH):在模拟的家庭环境中,LLM 需要完成一些日常任务,主要测试 LLM 将复杂高级目标分解为一系列简单动作的能力。
- 网络购物(WS):在模拟的在线购物场景中,LLM 需要根据需求完成购物任务,主要评估 LLM 的自主推理和决策能力。
- 网页浏览(WB):在模拟的网页环境中,LLM 需要根据指令完成跨网站的复杂任务,考察 LLM 作为网络代理的能力。
这些评测可以帮助了解和验证基于大模型 的 Agent 在不同环境和任务中的表现,其中操作系统和数据库操作属于初阶能力测试,这类场景的特点是操作环境简单,信息纯净;知识图谱和卡牌对战属于进阶能力测试,这类场景的特点是操作环境简单,但信息相对复杂;情景猜谜,居家场景,网络购物,网页浏览这一类场景操作环境相对复杂,信息也相对复杂,是对 Agent 的高阶能力测试。
具体到企业级 Agent 场景,倒不必必须按照上述环境来区分,但需要对自己的需求场景按照容错率低,中,高进行区分,制订相应的通过率指标,进行测试后,决定是否采用乙方 Agent 服务。
AgentBeach 数据集、环境和集成评估包发布地址[1]
ToolEmu
ToolEmu组成
ToolEmu 主要是对基于大模型 Agent 的安全测试,ToolEmu 设计了一个仿真框架,通过模拟多样化的工具集,检测 LLM-Base Agent 在各种场景下的表现,旨在自动化地发现真实世界中的故障场景,为 Agent 执行提供了一个高效的沙盒环境。ToolEmu 包括一个对抗性仿真器,专门用于模拟可能导致大模型代理故障的情景,从而让开发者更好地理解并改善代理的弱点,这种方式可以有效地识别真实世界中潜在的严重故障。此外还有自动安全评估器,通过分析代理执行过程中的潜在危险操作,来量化风险的严重性。
类 Agent 产品要集成到产品,在安全性方面可以参考这个项目进行测试。
项目官网[2]
Agent 执行轨迹评估
如果说 AgentBeach 是对基于大模型的 Agent 通用能力测试,则 Agent 执行轨迹评估(Agent Trajectory Evaluation)通过观察基于大模型的 Agent 在执行任务过程中所采取的一系列动作及其响应,来全面评价 Agent 的表现。这种方法用于评估 Agent 在解决问题时的逻辑和效率,以及它是否选择了正确的工具和步骤来完成任务。
代理执行轨迹评估的作用在于:
- 全面性:它不仅考虑最终结果,还关注过程中的每一步,从而提供更全面的评估。
- 逻辑性:通过分析代理的“思考链”,可以了解其决策过程是否合理。
- 效率性:评估代理是否采取了最少的步骤来完成任务,避免不必要的复杂性。
- 正确性:确保代理使用了合适的工具来解决问题。
下面是 LangChain 中代理执行轨迹评估的代码示例:
FireAct架构概览
此外,对 Agent 轨迹跟踪的思路还有一个妙用,就是微调出侧重于特定垂直场景 Agent 任务的模型,这种思路对应的技术叫FireAct[3](后台回复FireAct,获取相应代码、数据和模型,快手的KwaiAgents[4]也是类似的路子),它使用 GPT-4 生成的 500 个 Agent 操作轨迹来微调 Llama2-7B 模型,使其在 HotpotQA 任务上的表现提高了 77%,Midreal AI(一款小说生成产品,可以生成真正的小说,逻辑性和创造力都在线,而且还加入了互动能力,每到关键节点会让你选择剧情走向,还会生成一张配图。)也是用了 FireAct 技术。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。