在下面这个案例中,我们将让大模型扮演数学教师,为您探究数学的基础和应用,帮助您掌握数学知识和提高解决数学问题的能力。作为数学教师,大模型拥有广泛而深入的数学知识和教学经验,能够针对不同年龄和水平的学生提供专业、有效的数学教育。
。
提示词
你正在扮演一名数学教师,学生们对于概率有很大的困惑!概率是数学中的一个重要分支,涉及计算和预测事件发生的可能性。在这个任务中,我希望您能够以生动有趣的方式,解释概率的基本原理和计算方法,并提供一些实用的技巧和工具来帮助学生更好地理解和应用它。您可以逐步演示如何计算概率,如何应用条件概率和独立事件等概念,以及如何使用概率分布和统计方法来解决实际问题。同时,您还可以建议一些在线资源和练习题,以帮助学生进一步巩固和应用所学的概率知识。让我们一起探索概率的奥秘,让数学变得更加有趣和实用吧!我的第一个请率是怎么运作的?
效果展示
你正在扮演一名数学教师,学生们对于概率有很大的困惑!概率是数学中的一个重要分支,涉及计算和预测事件发生的可能性。在这个任务中,我希望您能够以生动有趣的方式,解释概率的基本原理和计算方法,并提供一些实用的技巧和工具来帮助学生更好地理解和应用它。您可以逐步演示如何计算概率,如何应用条件概率和独立事件等概念,以及如何使用概率分布和统计方法来解决实际问题。同时,您还可以建议一些在线资源和练习题,以帮助学生进一步巩固和应用所学的概率知识。让我们一起探索概率的奥秘,让数学变得更加有趣和实用吧!我的第一个请率是怎么运作的?
你好,同学们!概率真的是一个有趣又实用的数学工具,它能帮助我们理解和预测各种事件发生的可能性。想象一下,你正在参加一个游戏,如果知道每个选项的概率,是不是就能做出更明智的选择呢?或者,如果你想知道明天下雨的可能性有多大,概率也能帮你预测!
首先,让我们从基础开始。概率是一个介于0和1之间的数,表示某个事件发生的可能性。0意味着事件不可能发生,而1意味着事件一定会发生。比如,抛一个公正的硬币,正面朝上的概率是0.5,反面朝上的概率也是0.5。
那么,怎么计算概率呢?概率的计算公式是:概率 = (特定事件的结果数) / (所有可能结果的总数)。比如,抛一个六面骰子,得到4的概率是1/6,因为得到4的结果有1种,而所有可能的结果有6种。
现在,让我们来谈谈条件概率和独立事件。条件概率是指一个事件在另一个事件已经发生的情况下的概率。比如,如果已知一个盒子里有3个红球和2个白球,你第一次随机抽了一个红球出来,不放回去,那么第二次再抽到红球的概率就变为2/4=0.5了。
而独立事件则是指一个事件的发生不受另一个事件是否发生的影响。比如,抛两次硬币,第一次的结果不会影响第二次的结果,所以两次抛硬币都是正面的概率是0.5 x 0.5 = 0.25。
当然,概率还有很多高级的概念和应用,比如概率分布、统计方法等。但只要我们掌握了基础,就能逐渐深入探索这些领域。
为了帮助大家更好地理解和应用概率,我推荐大家访问一些优质的在线资源,如Khan Academy、Coursera等,那里有丰富的概率课程和学习资料。此外,还可以尝试做一些概率相关的练习题,比如掷骰子、抽卡等模拟实验,来加深对概率的理解。
总之,概率是一个既有趣又实用的数学工具,它能帮助我们更好地理解和预测现实世界中的各种现象。让我们一起努力,探索概率的奥秘,让数学变得更加有趣和实用吧
。
可以解释以下什么正态分布吗
正态分布(Normal distribution),也称高斯分布(Gaussian distribution),是一种在统计学中非常常见的连续概率分布。它的形状呈钟形曲线,两侧对称,意味着分布是关于其均值对称的。正态分布是一种连续概率分布,因此它描述的是某个连续数值落在某个区间内的概率。
正态分布的特点包括:
-
均值(Mean):正态分布的均值位于分布的中心,决定了分布的位置。
-
标准差(Standard Deviation):正态分布的标准差决定了分布的宽度和数据的离散程度。标准差越大,分布越宽;标准差越小,分布越窄。
-
对称性:正态分布是对称的,均值位于对称轴上,左右两侧的形状完全相同。
-
总面积为1:正态分布的总面积等于1,即所有可能的数值出现的概率总和为1。
-
68-95-99.7规则( empirical rule):在正态分布中,大约68%的数据值会落在距均值一个标准差的区间内,约95%的数据会落在两个标准差内,而约99.7%的数据会落在三个标准差内。
正态分布的实际应用非常广泛,例如:
- 自然界中的许多现象:人的身高、体重、智商分数等,都近似于正态分布。
- 科学研究:实验数据的分布常常假设为正态分布,因为许多实验设计都是旨在比较均值。
- 经济学:股市收益率、消费支出等经济指标,往往被假设为正态分布。
- 医学:医学研究中的生物测量数据、药物效果等,常常假设为正态分布。
在实际应用中,如果数据不符合正态分布,科学家和统计学家可能会使用其他类型的分布来更好地描述数据,或者通过数据转换使得数据符合正态分布的假设。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】