我们经常能听到某个大模型应用了 Agent技术、RAG技术、LangChain技术,它们似乎都和知识库、检索有关,那么这三者具体指什么,相互有什么关系呢,今天来介绍一下
1. Agent:
Agent指的是具有一定智能和自主行为能力的实体,它可以做出规划、调用工具、执行动作。它利用内置的大语言模型来做出规划,决定执行哪些步骤,每个步骤需要调用哪些工具(如 RAG),之后调用相应的工具,最终完成任务。
2.检索增强生成RAG(Retrieval-Augmented Generation):
RAG用于提升大模型回答问题的准确性。传统的大模型会凭空“编造”答案,RAG 技术结合检索和生成两个步骤来改善这个问题,是当前大模型解决“幻觉”问题的重要方法。
首先,它会检索相关文档或数据源(比如一个数据库或者网络资源),找到最相关的片段作为证据。
然后,大模型利用这些证据辅助生成精确的答案。
3. LangChain:LangChain
是一个专门为开发基于大语言模型的应用所设计的编程框架。它提供了一系列工具和服务,使得开发者能够更容易地构建和整合各种组件。
在涉及 RAG技术应用时,LangChain可以帮助开发者高效地组织、检索和对接多种数据源,例如将文本数据进行向量化存储,并与大模型进行无缝交互。
举个例子:做一个客服问答产品
1、LangChain作为一个基础设施平台,提供了构建此类系统的工具和服务。
在这个例子中,开发者使用LangChain整合不同的工具和服务,如对接检索服务、对接商品价格知识库、对接售后服务 API接口、对接大语言模型等。
2、Agent扮演核心角色,负责协调和执行整个客服处理过程。
①做出规划:用户问了一个问题“5斤特大号苹果加3斤中号苹果,一共多少钱”,Agent调用大语言模型进行规划:
大语言模型将这个过程分成2步第一步查询特大号苹果单价、中号苹果单价,第二步计算5斤特大号苹果 +3斤中号苹果的总价。第一步需要调用 RAG工具,第二步需要调用计算器工具。
②)调用工具:RAG工具首先通过检索模块从商品价格知识库中查找相关信息,找出最相关的条目,之后,Agent将这些条目传递给计算工具,计算工具计算出总价。
③执行动作:大模型基于总价生成客服文案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。