<本章均为网上资源的总结>
* 先看可导、连续、可微、可积关系
在a到b的区间中,将其中区域的f(x)去掉,函数依旧有可积性,毕竟求的是它面积嘛,但是连续就不是了
注意:这四个都能推出极限存在
可微可导充要条件判断(好像在18:00左右)
https://www.bilibili.com/video/BV1GQ4y1r77i?from=search&seid=15826877773207064833&spm_id_from=333.337.0.0
1.定义
一.可导
导数存在不能趋于正负无穷
二.连续
三.可微(一元)
可微的定义有些抽象,我更喜欢用几何的描述去理解
误差:线性增量减去实际增量
这里可微本质就是以直代曲的过程
2.关系条件
一.可导必连续,连续不一定可导
存在尖点类似这个符号 ^ 不可导
当X趋于Xo时由以上证明过程得可导必连续
ps:逆否命题 不连续一定不可导(某点处)
二.可微与可导为充要
可微可导连续过程离不开△x趋于0
可微可导的式子都可以相互反推出来
3.例题深化理解(本节重点)
①
如何下手?
有可导用不上
可以先往极限的角度思考
在x趋于0时 分母趋于0,要想极限存在必定分子为0
x=0可导那么必定能连续
直接可以得到f(0)=0,列出k的式子,因为x趋于0时,极限的等价无穷小替换,sinx~x,
就可列出导数的式子了,所以k=f’(0)=2
②
表面看是连续的线,其实他们是由无数个点去点出来的,不连续,也不可导
③
前面说过会有出现类似 ^ 这个符号的尖点,到处都是这个尖点
它的效果图
放大
后期你再放大都会重复出现这个图像(在一个小区域都能出现无数个尖点)
④
原因如下:
乍看和②的例题很像,但是区别在0处是可导的,也只有这地方可导,其余皆否
⑤
解析如下:
无穷小乘有界量,在x趋于0存在数值0,所以f(x)其他地方也是处处连续
如果直接列出导函数,你会发现f'(x)在X不等于0情况中X趋于0时有震荡点,则不连续
但是为什么能列出所有导函数却在f’(x)却不连续呢?这不就不符合我们可导必连续的条件了吗?
我们常常会直接把导数用求导法则直接求导,在X趋近Xo点时判定连续容易出错
原因是在单点求导时,f(x)可导与f’(x)连续并没有什么直接关系
所以在判定某点连续时还需要用定义
这样就连续了,满足了可导必连续的条件