积分上限函数的导数例题 笔记

本文详细介绍了复合函数求导的三个原则:区间可加性质、分离型复合函数和换元法,并通过例题展示了如何应用这些原则进行求导。内容包括如何使用洛必达法则、如何提取变量以及如何进行换元和还原。每个部分都有清晰的解题步骤,帮助读者深入理解复合函数的求导过程。
摘要由CSDN通过智能技术生成

delta哥22:30

  1. 复合函数求导原则

  •  (利用区间可加性质) 

  • (分离型复合函数)把关于t积分上限函数看做一个整体

  •  (换元法)

注意是f(u)...du因为dt=...du    ...指代没写出来的函数

 给个例题(下面的例题会有进阶的写法)


 下方全是例题


  • part1

既然都出现积分上限函数  直接就想怎么去进行求导,极限出现求导当然首想  就是洛他!洛出来就可以结合等价无穷小替换来结束此题了

  • part2

 

先别直接求导,应该先把x和t相关的函数提取出来分在左右两边

求出导函数,别忘了求出原函数时要加C常数,再看题目有没有条件,没有就代个好看点的值,比如1

  • part3

x和t都属于f()里面,根据刚刚的原则,应该直接想到还原法,看d后面是什么,比如此题是dt,那么就把x当做常数去看,换后重新确定好上下限和等价关系,再进行求导,还原,此题已给出f(0)=1所以在求出原函数直接代指即可把C常数算出来,即可得到完整原函数

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Weobo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值