- 复合函数求导原则:
- (利用区间可加性质)
- (分离型复合函数)把关于t积分上限函数看做一个整体
- (换元法)
注意是f(u)...du,因为dt=...du ...指代没写出来的函数
给个例题(下面的例题会有进阶的写法)
下方全是例题
- part1
既然都出现积分上限函数 直接就想怎么去进行求导,极限出现求导当然首想 就是洛他!洛出来就可以结合等价无穷小替换来结束此题了
- part2
先别直接求导,应该先把x和t相关的函数提取出来分在左右两边
求出导函数,别忘了求出原函数时要加C常数,再看题目有没有条件,没有就代个好看点的值,比如1
- part3
x和t都属于f()里面,根据刚刚的原则,应该直接想到还原法,看d后面是什么,比如此题是dt,那么就把x当做常数去看,换后重新确定好上下限和等价关系,再进行求导,还原,此题已给出f(0)=1所以在求出原函数直接代指即可把C常数算出来,即可得到完整原函数