1.19 UGUI的准备数据流程

1.UGUI准备数据的流程

在这里插入图片描述


在这里插入图片描述

a.PostLateUpdate.PlayerUpdateCanvases

- 作用: 这是Unity在每帧的晚期更新(LateUpdate)之后, 专门用于更新所有Canvas(UI画布)的系统函数; 它负责驱动整个

UI渲染流程

- 详细流程: 它会调用Canvas.SendWillRenderCanvases(), 从而触发一系列UI更新操作, 包括布局计算、网格重建、批处

理生成等

b. UGUI.Rendering.UpdateBatches

- 作用: 更新渲染批处理, 这是Unity UI系统进行批处理的关键步骤, 将多个UI元素合并到一个Draw Call中, 以减少渲染

开销

c.CanvasRenderer.SyncTransform

- 作用: 同步CanvasRenderer的变换信息, 当UI元素的位置、旋转或缩放发生变化时,需要将变换信息从Transform组件同步

到CanvasRenderer, 以便正确渲染

d.Canvas.BuildBatch

- 作用: 构建批处理, 将需要渲染的UI元素按照材质、纹理等条件进行分组, 生成一个或多个批处理(Batch), 每个批处理对

应一个Draw Call

e.Canvas.SendWillRenderCanvases() [invoke]

- 作用: 触发WillRenderCanvases事件, 这个事件会调用所有注册的CanvasUpdateRegistry中的元素, 执行布局和重建

f.Render

- 作用: 这是一个总的渲染阶段, 可能包含了多个子步骤; 在您提供的截图中, 它下面包含了Layout(布局)相关的步骤

g.Layout(布局计算)

- 作用: 计算UI元素的位置和大小, 当UI元素发生变化(如文本改变、尺寸调整)时, 需要重新计算布局

h.CanvasUpdate.Prelayout

- 作用: 布局前的准备工作, 在正式计算布局之前, 可能需要更新一些数据或状态

i.CanvasUpdate.PostLayout

- 作用: 布局后的处理工作; 在布局计算完成后, 可能需要更新一些依赖于布局结果的属性

j.CanvasUpdate.Layout

- 作用: 执行布局计算。这是布局系统的核心, 会根据UI元素的约束(如锚点、布局组)计算每个UI元素的最终位置和大小

k.CanvasRenderer.SyncWorldRect

- 作用: 同步CanvasRenderer的世界空间矩形, 这个矩形用于确定UI元素在屏幕上的裁剪区域

l.TransformChangeSystem

- 作用: 变换更改系统。处理Transform组件的更改,并更新相关的渲染数据

m.CanvasRenderer.SyncClipRect
- 作用: 同步CanvasRenderer的裁剪矩形; 当使用Mask或RectMask2D等裁剪组件时, 需要更新裁剪区域

m.Canvas.SendPreWillRenderCanvases() [invoke]

- 作用:触发PreWillRenderCanvases事件; 这个事件在WillRenderCanvases之前被调用, 用于执行一些前置操作

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值