HashMap 的 get 和 put 操作:深入解析与实际应用

HashMap 的 get 和 put 操作:深入解析与实际应用

在 Java 编程中,HashMap 是一种常用的数据结构,用于存储键值对(key-value pairs)。HashMap 提供了高效的插入、删除和查找操作,是许多应用程序的核心组件。本文将深入探讨 HashMapgetput 操作时经过的步骤,并通过丰富的代码示例和详细的解释,帮助你全面理解其工作原理及实际应用。

前置知识

在深入探讨之前,我们需要了解一些基本概念:

  1. 哈希表:一种数据结构,通过哈希函数将键映射到数组的索引位置,用于快速查找、插入和删除。
  2. 哈希函数:一种函数,将任意大小的数据映射到固定大小的数据(通常是一个整数)。
  3. 哈希冲突:不同的键通过哈希函数映射到相同的索引位置。
  4. 负载因子:哈希表中已存储元素数量与哈希表容量的比值,用于衡量哈希表的填充程度。
  5. 链地址法:一种解决哈希冲突的方法,每个索引位置存储一个链表或其他数据结构(如红黑树),用于存储冲突的键值对。
HashMap 的数据结构

HashMap 是 Java 集合框架中的一种实现,继承自 AbstractMap 类并实现了 Map 接口。HashMap 的数据结构主要由以下几个部分组成:

  1. 数组HashMap 内部使用一个数组来存储元素,数组的每个元素称为桶(bucket)。
  2. 链表/红黑树:每个桶可以存储一个链表或红黑树,用于解决哈希冲突。
  3. 哈希函数:用于将键映射到数组的索引位置。
  4. 负载因子:用于控制哈希表的填充程度,当负载因子超过阈值时,哈希表会进行扩容。
数组

HashMap 内部使用一个数组来存储元素,数组的每个元素称为桶(bucket)。数组的大小(容量)通常是 2 的幂次方,这样可以简化哈希函数的计算。

transient Node<K,V>[] table;
链表/红黑树

每个桶可以存储一个链表或红黑树,用于解决哈希冲突。当链表的长度超过一定阈值(默认为 8)时,链表会转换为红黑树,以提高查找效率。

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
}
哈希函数

HashMap 使用哈希函数将键映射到数组的索引位置。哈希函数通常包括两部分:计算键的哈希码(hashCode)和将哈希码映射到数组索引。

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
负载因子

负载因子用于控制哈希表的填充程度,当负载因子超过阈值时,哈希表会进行扩容。默认的负载因子为 0.75。

final float loadFactor;
get 操作

get 操作用于根据键查找对应的值。get 操作的步骤如下:

  1. 计算哈希值:使用哈希函数计算键的哈希值。
  2. 计算索引:将哈希值映射到数组的索引位置。
  3. 查找元素:在对应的桶中查找键值对。
示例代码
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

解释:

  • get 方法调用 getNode 方法,传入键的哈希值和键。
  • getNode 方法首先检查数组是否为空,以及对应索引位置的桶是否为空。
  • 如果桶的第一个节点匹配,则返回该节点。
  • 如果桶是红黑树,则调用红黑树的查找方法。
  • 如果桶是链表,则遍历链表查找匹配的节点。
put 操作

put 操作用于插入或更新键值对。put 操作的步骤如下:

  1. 计算哈希值:使用哈希函数计算键的哈希值。
  2. 计算索引:将哈希值映射到数组的索引位置。
  3. 插入或更新元素:在对应的桶中插入或更新键值对。
  4. 扩容:如果负载因子超过阈值,哈希表会进行扩容。
示例代码
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

解释:

  • put 方法调用 putVal 方法,传入键的哈希值、键、值等参数。
  • putVal 方法首先检查数组是否为空,以及对应索引位置的桶是否为空。
  • 如果桶为空,则直接插入新节点。
  • 如果桶的第一个节点匹配,则更新该节点的值。
  • 如果桶是红黑树,则调用红黑树的插入方法。
  • 如果桶是链表,则遍历链表查找匹配的节点,如果不存在则插入新节点。
  • 如果链表长度超过阈值,则将链表转换为红黑树。
  • 如果负载因子超过阈值,哈希表会进行扩容。
实际应用

在实际编程中,HashMap 在以下场景中非常有用:

  1. 数据缓存:使用 HashMap 存储频繁访问的数据,提高数据访问速度。
  2. 数据去重:使用 HashMap 存储唯一的数据,自动去重。
  3. 数据映射:使用 HashMap 存储键值对,实现数据之间的映射关系。
示例代码
import java.util.HashMap;

public class HashMapApplicationExample {
    public static void main(String[] args) {
        // 数据缓存
        HashMap<String, String> cache = new HashMap<>();
        cache.put("user1", "data1");
        cache.put("user2", "data2");
        String cachedData = cache.get("user1");
        System.out.println("Cached Data for user1: " + cachedData);

        // 数据去重
        HashMap<String, Boolean> uniqueData = new HashMap<>();
        uniqueData.put("data1", true);
        uniqueData.put("data2", true);
        uniqueData.put("data1", true); // 重复数据,不会插入
        System.out.println("Unique Data: " + uniqueData.keySet());

        // 数据映射
        HashMap<String, Integer> mapping = new HashMap<>();
        mapping.put("key1", 1);
        mapping.put("key2", 2);
        int mappedValue = mapping.get("key1");
        System.out.println("Mapped Value for key1: " + mappedValue);
    }
}

输出:

Cached Data for user1: data1
Unique Data: [data1, data2]
Mapped Value for key1: 1

解释:

  • 使用 HashMap 实现数据缓存,提高数据访问速度。
  • 使用 HashMap 实现数据去重,自动去重。
  • 使用 HashMap 实现数据映射,存储键值对。
总结

在 Java 编程中,HashMap 是一种高效的数据结构,用于存储键值对。理解 HashMapgetput 操作时经过的步骤,有助于编写更高效、更易于维护的代码。

希望通过本文的详细解释和代码示例,你已经对 HashMapgetput 操作有了更深入的理解。如果你有任何问题或需要进一步的解释,请随时提问!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值