在传染病传播的研究中,多媒介多宿主(MMDM)模型能够更细致地刻画复杂的传播机制,为防控策略提供科学依据。本文将深入探讨如图所示的 MMDM 模型,并通过 MATLAB 代码实现其动态模拟,分析不同群体在传染病传播中的行为。
一、MMDM 模型解析
图中的 MMDM 模型由一组微分方程构成,详细描述了不同群体及环境媒介的动态变化:
\(\begin{cases} \frac{dS_1}{dt} = br \cdot N - dr \cdot S_1 - \beta_1 \cdot S_1 \cdot (I_1 + \kappa \cdot A_1) - \beta_{2 - 1} \cdot S_1 \cdot A_2 - \beta_w \cdot S_1 \cdot W_{env} - \beta_{3 - 1} \cdot S_1 \cdot A_3 \\ \frac{dE_1}{dt} = \beta_1 \cdot S_1 \cdot (I_1 + \kappa \cdot A_1) + \beta_w \cdot S_1 \cdot W_{env} + \beta_{2 - 1} \cdot S_1 \cdot A_2 + \beta_{3 - 1} \cdot S_1 \cdot A_3 - dr \cdot E_1 - p \cdot \omega_1 \cdot E_1 - (1 - p) \cdot \omega_1 \cdot E_1 \\ \frac{dA_1}{dt} = p \cdot \omega_1 \cdot E_1 - dr \cdot A_1 - \gamma' \cdot A_1 \\ \frac{dI_1}{dt} = (1 - p) \cdot \omega_1 \cdot E_1 - \gamma \cdot I_1 - (dr + f) \cdot I_1 \\ \frac{dR_1}{dt} = \gamma' \cdot A_1 + \gamma \cdot I_1 - dr \cdot R_1 \\ \frac{dW_{env}}{dt} = j \cdot A_3 \\ \frac{dS_2}{dt} = - \beta_2 \cdot S_2 \cdot A_2 - \beta_{3 - 2} \cdot S_2 \cdot A_3 \\ \frac{dE_2}{dt} = \beta_2 \cdot S_2 \cdot A_2 + \beta_{3 - 2} \cdot S_2 \cdot A_3 - \omega_2 \cdot E_2 \\ \frac{dA_2}{dt} = \omega_2 \cdot E_2 \\ \frac{dS_3}{dt} = - \beta_w \cdot S_3 \cdot W_{env} - \beta_3 \cdot S_3 \cdot A_3 - \beta_{2 - 3} \cdot S_3 \cdot A_2 \\ \frac{dE_3}{dt} = \beta_3 \cdot S_3 \cdot A_3 + \beta_{2 - 3} \cdot S_3 \cdot A_2 + \beta_w \cdot S_3 \cdot W_{env} - \omega_3 \cdot E_3 \\ \frac{dA_3}{dt} = \omega_3 \cdot E_3 \end{cases}\)
- 易感者 \(S_1\):\(\frac{dS_1}{dt}\) 表示其变化率,包含出生率 \(br \cdot N\),因接触感染者 \(I_1\)、无症状感染者 \(A_1\)、媒介 \(A_2\)、环境病原体 \(W_{env}\)、另一媒介 \(A_3\) 而减少。
- 暴露者 \(E_1\):\(\frac{dE_1}{dt}\) 包含感染输入(来自 \(S_1\) 的感染),以及向不同状态的转化和自然死亡。
- 无症状感染者 \(A_1\):\(\frac{dA_1}{dt}\) 由暴露者转化(\(p \cdot \omega_1 \cdot E_1\)),并考虑自然死亡和康复(\(\gamma' \cdot A_1\))。
- 感染者 \(I_1\):\(\frac{dI_1}{dt}\) 由暴露者转化(\((1 - p) \cdot \omega_1 \cdot E_1\)),并考虑康复(\(\gamma \cdot I_1\))和死亡(\((dr + f) \cdot I_1\))。
- 康复者 \(R_1\):\(\frac{dR_1}{dt}\) 汇总无症状感染者和感染者的康复,以及自然死亡。
- 环境病原体 \(W_{env}\):\(\frac{dW_{env}}{dt}\) 由媒介 \(A_3\) 释放(\(j \cdot A_3\))。
- 其他群体(\(S_2, E_2, A_2, S_3, E_3, A_3\)):各自的微分方程描述了它们在不同传播途径下的动态变化。
二、MATLAB 代码实现
1. 参数设置
br = 0.00009173; % 出生率
dr = 0.00007523; % 自然死亡率
kappa = 1; % 无症状感染相对传染系数
p = 0.043; % 潜伏感染的比例
f = 0.16; % 致死率
% 潜伏期和感染期(单位:天)
omega1 = 1/11;
gamma = 1/14;
gamma_prime = 1/14;
% 媒介相关参数
beta2 = 0; % 媒介之间的传播系数
omega2 = 1/7;
% 宿主相关参数
omega3 = 1/12;
j = 10; % 宿主向环境传播的速率
% 环境相关
W = 0.048; % 环境中的媒介密度
% 初始值设置
S1_0 = 10000; E1_0 = 0; A1_0 = 0; I1_0 = 10;
R1_0 = 0; W_env_0 = 0; S2_0 = 1000; E2_0 = 0;
A2_0 = 1; S3_0 = 1000; E3_0 = 0; A3_0 = 1; X_0 = 0;
Y0 = [S1_0; E1_0; A1_0; I1_0; R1_0; W_env_0; S2_0; E2_0; A2_0; S3_0; E3_0; A3_0; X_0];
% 时间范围(单位:天)
tspan = linspace(0, 365, 365);
% 其他参数
beta0 = 0.0005; alpha = 0; T = 365;
代码详细设置了出生率、死亡率、传播系数、潜伏期和感染期等参数,并初始化各群体数量和环境媒介密度。
2. 求解微分方程与可视化
[t, Y] = ode45(@(t,Y) MMDM_model(t, Y, beta0, alpha, T, br, dr, kappa, p, f,...
omega1, gamma, gamma_prime, beta2, omega2, omega3, j, W), tspan, Y0);
% 可视化结果
figure;
plot(t, Y(:,1), 'DisplayName', 'S1 (Susceptible)', 'LineWidth', 2); hold on;
plot(t, Y(:,2), 'DisplayName', 'E1 (Exposed)', 'LineWidth', 2);
plot(t, Y(:,3), 'DisplayName', 'A1 (Asymptomatic)', 'LineWidth', 2);
plot(t, Y(:,4), 'DisplayName', 'I1 (Infected)', 'LineWidth', 2);
plot(t, Y(:,5), 'DisplayName', 'R1 (Removed)', 'LineWidth', 2);
xlabel('Time (days)'); ylabel('Population');
title('MMDM Simulation'); legend; hold off;
使用 ode45
求解微分方程组,模拟一年(365 天)内各群体的动态变化,并通过绘图直观展示结果。
三、结果分析与应用
从可视化结果可以观察到:
- 易感者 \(S_1\):随时间下降,因不断被感染。
- 暴露者 \(E_1\):先升后降,反映感染积累与转化为其他状态的过程。
- 无症状感染者 \(A_1\) 和 感染者 \(I_1\):呈现动态变化,受潜伏期和感染期参数影响。
- 康复者 \(R_1\):持续增加,由感染者和无症状感染者康复而来。
MMDM 模型的应用价值在于:
- 防控策略评估:通过调整传播系数(如 \(\beta_1, \beta_w\))和干预措施(如隔离、消毒),模拟不同策略对疫情的影响。
- 公共卫生规划:为医疗资源分配(如床位、药品)提供依据,基于模型预测不同阶段的感染人数。
- 研究传播机制:分析多媒介、多宿主环境下传染病的传播路径,为阻断传播提供理论支持。
四、总结
本文通过 MMDM 模型和 MATLAB 代码,实现了传染病传播的动态模拟。模型细致刻画了多群体、多媒介的复杂传播过程,代码通过参数设置、方程求解和可视化,直观展示了各群体的变化趋势。未来可进一步优化模型,纳入更多实际因素(如疫苗接种、气候影响),提升模型的实用性和准确性,为传染病防控提供更强大的支持。
通过这样的分析,我们能更好地理解传染病在多媒介多宿主环境下的传播机制,为制定精准的防控策略奠定基础,保障公众健康与安全。