LeetCode 2203. 得到要求路径的最小带权子图(dijkstra算法)


题目描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

解题思路:三次最短路

  • src 1 \textit{src}_1 src1 dest \textit{dest} dest 有唯一的一条简单路径,记为 X X X

  • src 2 \textit{src}_2 src2 dest \textit{dest} dest 有唯一的一条简单路径,记为 Y Y Y

假设 X X X 上第一个与 Y Y Y 共有的节点为 c c c,显然这样的 c c c 是一定存在的,因为 dest \textit{dest} dest 就是 X X X Y Y Y 的一个共有节点(但可能存在更早的共有节点)。因此,整个子图可以看成是三部分的并集:

  • src 1 \textit{src}_1 src1 c c c 的一条简单路径

  • src 2 \textit{src}_2 src2 c c c 的一条简单路径

  • c c c dest \textit{dest} dest 的一条简单路径

此时子图的边权和即为这三部分的边权和之和,即子图呈现「Y 型」。

算法流程:

  • 使用两次 Dijkstra \text{Dijkstra} Dijkstra 算法计算出以 src 1 \textit{src}_1 src1 为出发点和以 src 2 \textit{src}_2 src2 为出发点,到所有节点的最短路径长度
  • 对于「从 c c c dest \textit{dest} dest」这一部分,可以将原图中的所有边反向,这样就变成了「从 dest \textit{dest} dest c c c」。就可以使用 Dijkstra \text{Dijkstra} Dijkstra 算法计算出以 dest \textit{dest} dest 为出发点,到所有节点的最短路径长度
  • 在得到了所有需要的最短路径的长度之后,枚举 c c c 得出答案
class Solution {
    public long minimumWeight(int n, int[][] edges, int src1, int src2, int dest) {
        // 建图 正向图 + 反向图
        List<int[]>[] g = new List[n], rg = new List[n];
        Arrays.setAll(g, e -> new ArrayList<int[]>());
        Arrays.setAll(rg, e -> new ArrayList<int[]>());
        for (int[] e : edges) {
            int x = e[0], y = e[1], weight = e[2];
            g[x].add(new int[]{y, weight});
            rg[y].add(new int[]{x, weight});
        }
        // 3次dijkstra
        long[] dist1 = dijkstra(g, src1);
        long[] dist2 = dijkstra(g, src2);
        long[] dist3 = dijkstra(rg, dest);
        // 枚举 c
        long ans = Long.MAX_VALUE/3;
        for (int i = 0; i < n; i++) {
            if (dist1[i] == Long.MAX_VALUE/3 || dist2[i] == Long.MAX_VALUE/3 || dist3[i] == Long.MAX_VALUE/3) {
                continue ;
            }
            ans = Math.min(ans, dist1[i] + dist2[i] + dist3[i]);
        }
        return ans >= Long.MAX_VALUE/3 ? -1 : ans;
    }

    // 计算点 start 到各点的最短距离
    private long[] dijkstra(List<int[]>[] g, int start) {
        // dist[x] = y 代表从「源点/起点」到 x 的最短距离为 y
        long[] dist = new long[g.length];
        // 起始先将所有的点标记为「距离为正无穷」
        Arrays.fill(dist, Long.MAX_VALUE / 3);
        // 只有起点最短距离为 0
        dist[start] = 0;
        // 小根堆 
        // 以 (到起点的距离,点编号) 进行存储,优先弹出「最短距离」较小的点
        PriorityQueue<long[]> pq = new PriorityQueue<long[]>((a, b) -> Long.compare(a[0], b[0]));
        pq.offer(new long[]{0l, start});
        while (!pq.isEmpty()) {
            long[] p = pq.poll();
            long weight = p[0];
            int x = (int) p[1];
            if (weight > dist[x]) {
                continue ;
            }
            // 更新其他点的「最短距离」
            for (int[] e : g[x]) {
                int y = e[0];
                long d = dist[x] + e[1];
                if (d < dist[y]) {
                    dist[y] = d;
                    pq.offer(new long[]{d, y});
                }
            }
        }
        return dist;
    }
}
  • 时间复杂度: O ( n + m log ⁡ m ) O(n + m \log m) O(n+mlogm),其中 m m m 是数组 edges \textit{edges} edges 的长度

  • 空间复杂度: O ( m ) O(m) O(m),即为存储图和反向图的邻接表需要使用的空间

Reference

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xylitolz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值