坐标系转换--椭球面多项式拟合公式转换模型变换关系理解

椭球面多项式拟合公式转换模型变换关系理解

{ Δ L = a 0 + a 1 L + a 2 B + a 3 L B + a 4 L 2 + a 5 B 2 Δ B = b 0 + b 1 L + b 2 B + b 3 L B + b 4 L 2 + b 5 B 2 (1) \tag{1} \begin{dcases} \varDelta{L} = a_0 + a_1L + a_2B + a_3LB + a_4L^2 + a_5B^2 \\ \varDelta{B} = b_0 + b_1L + b_2B + b_3LB + b_4L^2 + b_5B^2 \end{dcases} {ΔL=a0+a1L+a2B+a3LB+a4L2+a5B2ΔB=b0+b1L+b2B+b3LB+b4L2+b5B2(1)
式中: 式中: 式中:
B , L :维度、经度,单位为弧度 ( r a d ) ; B,L:维度、经度,单位为弧度(rad); B,L:维度、经度,单位为弧度(rad)
a i , b i :多项式拟合系数,通过最小二乘求解。 a_i,b_i:多项式拟合系数,通过最小二乘求解。 ai,bi:多项式拟合系数,通过最小二乘求解。

( 1 ) 式转为矩阵方程式为: (1)式转为矩阵方程式为: (1)式转为矩阵方程式为:
[ Δ L Δ B ] = [ 1 L B L B L 2 B 2 0 0 0 0 0 0 0 0 0 0 0 0 1 L B L B L 2 B 2 ] [ a 0 a 1 a 2 a 3 a 4 a 5 b 0 b 1 b 2 b 3 b 4 b 5 ] (2) \tag{2} \begin{bmatrix} \varDelta{L} \\ \varDelta{B} \end{bmatrix} = \begin{bmatrix} 1 & L & B & LB & L^2 & B^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & L & B & LB & L^2 & B^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} [ΔLΔB]=[10L0B0LB0L20B20010L0B0LB0L20B2] a0a1a2a3a4a5b0b1b2b3b4b5 (2)

基于最小二乘与多对同名点对计算参数

设存在 n 对同名点对: ( L a , B a ) 1 → ( L b , B b ) 1 , ⋯ , ( L a , B a ) n → ( L b , B b ) n . 设存在n对同名点对:(L_a,B_a)_1 \rarr (L_b,B_b)_1,\cdots,(L_a,B_a)_n \rarr (L_b,B_b)_n. 设存在n对同名点对:(La,Ba)1(Lb,Bb)1(La,Ba)n(Lb,Bb)n.
令 令
θ = [ a 0 a 1 a 2 a 3 a 4 a 5 b 0 b 1 b 2 b 3 b 4 b 5 ] \theta = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} θ= a0a1a2a3a4a5b0b1b2b3b4b5
v i = ( L b − L a , B b − B a ) i T , v_i=(L_b - L_a,B_b - B_a)^T_i, vi=(LbLa,BbBa)iT
P i = [ 1 L a B a L a B a L a 2 B a 2 0 0 0 0 0 0 0 0 0 0 0 0 1 L a B a L a B a L a 2 B a 2 ] i , P_i= \begin{bmatrix} 1 & L_a & B_a & L_aB_a & L_a^2 & B_a^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & L_a & B_a & L_aB_a & L_a^2 & B_a^2 \end{bmatrix}_i, Pi=[10La0Ba0LaBa0La20Ba20010La0Ba0LaBa0La20Ba2]i
i = 1 , ⋯   , n i=1,\cdots,n i=1,,n

根据式 ( 3 ) ,代入样本值得到方程组如下: 根据式(3),代入样本值得到方程组如下: 根据式(3),代入样本值得到方程组如下:
{ P 1 θ = v 1 P 2 θ = v 2 ⋮ P n θ = v n \begin{dcases} P_1\theta = v_1 \\ P_2\theta = v_2 \\ \vdots \\ P_n\theta = v_n \end{dcases} P1θ=v1P2θ=v2Pnθ=vn
则变换为矩阵方程为: 则变换为矩阵方程为: 则变换为矩阵方程为:
v = P θ v = P\theta v=
P = [ P 1 P 2 ⋮ P n ] , v = [ v 1 v 2 ⋮ v n ] P= \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{bmatrix}, v= \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} P= P1P2Pn v= v1v2vn

考虑 v = P θ 无解,需要从 P 的列空间中找出最接近 v 的向量 u ( u 可以理解为 v 在 P 的列空间中的投影,理解如下图所示:) 考虑v = P\theta无解,需要从P的列空间中找出最接近v的向量u(u可以理解为v在P的列空间中的投影,理解如下图所示:) 考虑v=无解,需要从P的列空间中找出最接近v的向量uu可以理解为vP的列空间中的投影,理解如下图所示:)
在这里插入图片描述

如上图所示, p 是 b 在 [ a 1 a 2 ] 列空间中的投影。 如上图所示,p是b在\begin{bmatrix} a_1 & a_2 \end{bmatrix} 列空间中的投影。 如上图所示,pb[a1a2]列空间中的投影。
令 e = v − u ,最小二乘就是找到 ∥ e ∥ 2 最小的点,最小二乘就是指向量长度的最小平方。 令e=v-u,最小二乘就是找到\parallel e \parallel^2最小的点,最小二乘就是指向量长度的最小平方。 e=vu,最小二乘就是找到e2最小的点,最小二乘就是指向量长度的最小平方。

由上可知, u 位于 P 的列空间中,即 u 是 P 的各列的线性组合: 由上可知,u位于P的列空间中,即u是P的各列的线性组合: 由上可知,u位于P的列空间中,即uP的各列的线性组合:
令 P 的列空间为 P = [ C 1 C 2 ⋯ C m ] 令P的列空间为 P= \begin{bmatrix} C_1 & C_2 & \cdots & C_m \end{bmatrix} P的列空间为P=[C1C2Cm]
故存在 u = C 1 θ 1 ~ + C 2 θ 2 ~ + ⋯ + C m θ m ~ 故存在 u=C_1\tilde{\theta_1} + C_2\tilde{\theta_2} + \cdots + C_m\tilde{\theta_m} 故存在u=C1θ1~+C2θ2~++Cmθm~
即 P θ ~ = u 有解。 即P\tilde{\theta}=u有解。 Pθ~=u有解。

e = v − u = v − P θ ~ e=v-u=v-P\tilde{\theta} e=vu=vPθ~
e 正交于 P 的列空间,存在: e正交于P的列空间,存在: e正交于P的列空间,存在:
e ⊥ C 1 , e ⊥ C 2 , ⋯   , e ⊥ C m e \perp C_1,e \perp C_2,\cdots,e \perp C_m eC1,eC2,,eCm

由向量点积关系式可得: 由向量点积关系式可得: 由向量点积关系式可得:

⇒ { C 1 T ( v − P θ ~ ) = 0 C 2 T ( v − P θ ~ ) = 0 ⋮ C m T ( v − P θ ~ ) = 0 \Rarr \begin{dcases} C_1^T(v-P\tilde{\theta})=0 \\ C_2^T(v-P\tilde{\theta})=0 \\ \vdots \\ C_m^T(v-P\tilde{\theta})=0 \end{dcases} C1T(vPθ~)=0C2T(vPθ~)=0CmT(vPθ~)=0

⇒ [ C 1 T C 2 T C 3 T ⋮ C m T ] ( v − P θ ~ ) = [ 0 0 0 ⋮ 0 ] \Rarr \begin{bmatrix} C_1^T \\ C_2^T \\ C_3^T \\ \vdots \\ C_m^T \end{bmatrix} (v-P\tilde{\theta})= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} C1TC2TC3TCmT (vPθ~)= 0000

∵ P = [ C 1 C 2 ⋯ C m ] \because P= \begin{bmatrix} C_1 & C_2 & \cdots & C_m \end{bmatrix} P=[C1C2Cm]
∴ P T = [ C 1 T C 2 T ⋮ C m T ] \therefore P^T = \begin{bmatrix} C_1^T \\ C_2^T \\ \vdots \\ C_m^T \end{bmatrix} PT= C1TC2TCmT

⇒ P T ( v − P θ ~ ) = 0 \Rarr P^T(v-P\tilde{\theta})=0 PT(vPθ~)=0
⇒ P T P θ ~ = P T v \Rarr P^TP\tilde{\theta}=P^Tv PTPθ~=PTv
⇒ θ ~ = ( P T P ) − 1 P T v \Rarr \tilde{\theta}=(P^TP)^{-1}P^Tv θ~=(PTP)1PTv

即 θ ~ = ( P T P ) − 1 P T v 为基于最小二乘计算出来的最接近实际参数的转换值 即\tilde{\theta}=(P^TP)^{-1}P^Tv为基于最小二乘计算出来的最接近实际参数的转换值 θ~=(PTP)1PTv为基于最小二乘计算出来的最接近实际参数的转换值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值