无监督 自监督---综述

OpenSelfSup: Open-MMLab自监督表征学习代码库
自监督学习论文集装箱:awesome-self-supervised-learning
综述 | 自监督学习(Self-Supervised Learning) 2018-2020年的发展

Self-supervised Learning 再次入门(xys:1、基于上下文、基于时序、基于对比等分类,2、自监督学习的基本方法流程;3、提及自监督与具体任务相结合–多任务学习)
通过图像混合和标签平滑提升无监督学习性能
何恺明一作,刷新7项检测分割任务,无监督预训练完胜有监督

对比学习

从 SimCLR 到 BarLow Twins ,一文了解自监督学习不断打脸的认知发展史
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
https://arxiv.org/abs/2103.03230
在这里插入图片描述
终于到了这次的主角:Barlow Twins。在不考虑数据增强这种大家都有的trick的基础上, Barlow Twins 既没有使用负样本,也没有动量更新的网络,也没有predictor和stop gradient操作。Twins 所做的是换了一种视角去学习表示,从embeddig本身出发,而不是从样本出发。优化目标是使得不同视角下的特征的相关矩阵接近恒等矩阵,即让不同的维度的特征尽量表示不同的信息,从而提升特征的表征能力。这种做法,感觉和以前传统降维(如PCA)的方法是有共通之处的。

无监督表示学习(一):2018 Contrastive Predictive Coding(CPC)
DeepMind无监督表示学习重大突破:语音、图像、文本、强化学习全能冠军!(xys:CPC)
《Supervised Contrastive Learning》笔记

深入分析三种对比学习方法:SimCLR、CPC、AMDIM(写的很好,描述 很多实现细节)
对应的原论文

自监督、半监督和有监督全涵盖,四篇论文遍历对比学习的研究进展对比学习也可以跟普通的监督学习结合,而不是仅用于自监督学习

Boosting Self-Supervised Learning via Knowledge Transfer

在这里插入图片描述

在这里插入图片描述
(a)中的pretext task是Jigsaw++ task
在这里插入图片描述

解读自监督学习几篇相关paper
自监督学习的思想非常简单,就是输入的是一堆无监督的数据,但是通过数据本身的结构或者特性,人为构造标签(pretext)出来。有了标签之后,就可以类似监督学习一样进行训练。
比较知名的工作有两个,一个是:Unsupervised Visual Representation Learning by Context Prediction(ICCV15),如图一,人为构造图片Patch相对位置预测任务,这篇论文可以看作是self-supervised这一系列方法的最早期paper之一;另一个是:Unsupervised Representation Learning by Predicting Image Rotations (ICLR18),如图二,人为构造图片旋转角度预测任务,这篇论文因为想法极其简单在投稿到ICLR之后受到了极大关注,最终因为实验结果非常全面有效最终被录用。

RETHINKING DATA AUGMENTATION: SELF- SUPERVISION AND SELF-DISTILLATION。

这篇论文的思想非常直观,如图三。首先,Data Augmentation相关的方法会对通过对原始图片进行一些变换(颜色、旋转、裁切等)来扩充原始训练集合,提高模型泛化能力;Multi-task learning将正常分类任务和self-supervised learning的任务(比如旋转预测)放到一起进行学习。作者指出通过data augmentation或者multi-task learning等方法的学习强制特征具有一定的不变性,会使得学习更加困难,有可能带来性能降低。因此,作者提出将分类任务的类别和self-supervised learning的类别组合成更多类别(例如 (Cat, 0),(Cat,90)等),用一个损失函数进行学习。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Revisiting Self-Supervised Visual Representation Learning (CVPR19)

Revisiting这篇paper研究了多种网络结构以及多种self-supervised的任务的组合,得到了一些启发性的经验结论:
与supervised learning不同的是,self-supervised learning在不同task上的结果依赖于网络结构的选择,比如对于rotation预测,RevNet50性能最好,但是对于Patch预测,ResNet50v1性能最好。

以前的self-supervised方法通常表明,alexnet的最后几层特征性能会下降。但是这篇paper结论是对于skip-connection(resnet)结构的网络,高层的特征性能并不会下降。

增加filter数目和特征大小,对于性能提升帮助很大。

衡量无监督性能最后训练的线性分类器非常依赖学习率的调整策略。
在这里插入图片描述

S^4L: Self-Supervised Semi-Supervised Learning(ICCV19) 。

S^4L这一篇paper,非常像上面图(a)中multitask learning的策略,即有标签数据上面加一个正常的分类损失,无标签数据上加一个self-supervised的损失,具体公式如下:

在这里插入图片描述
在这里插入图片描述

BYOL

[论文笔记]——BYOL:无需负样本就可以做对比自监督学习(DeepMind)(分析了哪些成分在起作用)
自监督SOTA框架 | BYOL(优雅而简洁) | 2020

监督对比学习

【论文笔记 1】Supervised Contrastive Learning—nips 2020
代码:https://github.com/HobbitLong/SupContrast
在这里插入图片描述

MAE系列

AWESOME MASK IMAGE MODELING FOR VISUAL REPRESENTION
在这里插入图片描述

SimMIM | 续Kaiming的MAE后,MSRA提出更简单的掩码图像建模框架!

使用ViT-B,通过对该数据集进行预训练,该方法在ImageNet-1K上实现了83.8%的top-1微调精度,比之前的最佳方法高出0.6%。

Efficient Self-supervised Vision Pretraining with Local Masked Reconstruction

  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值