图像重构---从RGB重构高光谱

2021-ICCV-Semantic-embedded Unsupervised Spectral Reconstruction from Single RGB Images in the Wild
源码

2020-CVPR-Hierarchical Regression Network for Spectral Reconstruction from RGB Images
源码

2020-CVPR-Adaptive Weighted Attention Network with Camera Spectral Sensitivity Prior for Spectral Reconstruction from RGB Images
源码

2020-Light Weight Residual Dense Attention Net for Spectral Reconstruction
源码

网络架构

一文读懂HRNet
超级快的HRNet
突破置换模块计算瓶颈,MSRA开源轻量版HRNet,超越主流轻量化网络!|CVPR2021
论文笔记:HR-NAS (CVPR2021 Oral)(xys:HRnet+transformer,并搜索了HRnet中的卷积结构)

一些传统方法

Compressive Spectral Image Reconstruction using Deep prior and Low-Rank Tensor Representation
源码

压缩光谱成像 (CSI) 已成为一种替代光谱图像采集技术,它以需要恢复过程为代价减少了测量次数。通常,重建方法基于在优化算法中用作正则化器的手工先验,或者最近用作图像生成器的深度神经网络来学习从低维压缩测量到图像空间的非线性映射。然而,这些深度学习方法需要许多光谱图像才能获得良好的性能。
在这项工作中,提出了一个没有训练数据的 CSI 深度恢复框架。所提出的方法基于以下事实:一些深度神经网络的结构和适当的低维结构足以强加来自 CSI 的基础光谱图像的结构。我们通过在第一个网络层建模的 Tucker 表示分析了低维结构。所提出的方案是通过最小化压缩测量和预测测量之间的 L2- 范数距离来获得的,并且在前向算子之前形成所需的恢复光谱图像。仿真和实验结果验证了所提出的编码孔径快照光谱成像方法的有效性。

Deep Low-Dimensional Spectral Image Representation for Compressive Spectral Reconstruction
源码

基于模型的深度学习技术是压缩光谱成像重建的最新技术。这些方法将深度神经网络 (DNN) 集成为光谱图像表示,用作优化问题中的先验信息,以增加非线性表示的维数(即要恢复的参数数量)为代价显示最佳结果。本文提出了一种基于自动编码器的网络,该网络通过特征缩减来保证低维光谱表示,可用作压缩光谱成像重建的先验。此外,基于所获得的低维光谱表示保留了场景的空间结构的实验观察,这项工作利用生成的特征空间中的稀疏性,通过使用小波基来进一步减少逆问题的维数。与最先进的方法相比,所提出的方法显示出高达 2 dB 的改进。

2017-ACM-High-Quality Hyperspectral Reconstruction Using a Spectral Prior
源码

  • 1
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的U-Net实现RGB图像重构高光谱图像的代码示例,使用的是PyTorch框架: ```python import torch import torch.nn as nn class DoubleConv(nn.Module): """双层卷积模块""" def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.conv(x) class Up(nn.Module): """上采样模块""" def __init__(self, in_channels, out_channels): super().__init__() self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = nn.functional.pad(x1, [diffX // 2, diffX - diffX//2, diffY // 2, diffY - diffY//2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class UNet(nn.Module): """U-Net模型""" def __init__(self, in_channels, out_channels): super().__init__() self.conv1 = DoubleConv(in_channels, 64) self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = DoubleConv(64, 128) self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = DoubleConv(128, 256) self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4 = DoubleConv(256, 512) self.maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5 = DoubleConv(512, 1024) self.up1 = Up(1024, 512) self.up2 = Up(512, 256) self.up3 = Up(256, 128) self.up4 = Up(128, 64) self.out = nn.Conv2d(64, out_channels, kernel_size=1) def forward(self, x): x1 = self.conv1(x) x2 = self.maxpool1(x1) x2 = self.conv2(x2) x3 = self.maxpool2(x2) x3 = self.conv3(x3) x4 = self.maxpool3(x3) x4 = self.conv4(x4) x5 = self.maxpool4(x4) x5 = self.conv5(x5) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) x = self.out(x) return x ``` 使用U-Net模型进行RGB图像重构高光谱图像的训练和测试代码示例: ```python import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import DataLoader from dataset import CustomDataset # 加载数据集 transform = transforms.Compose([ transforms.ToTensor() ]) dataset = CustomDataset(transform=transform) train_loader = DataLoader(dataset, batch_size=32, shuffle=True) # 定义U-Net模型 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = UNet(in_channels=3, out_channels=30).to(device) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for inputs, targets in train_loader: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 测试模型 test_input = torch.rand(1, 3, 256, 256).to(device) with torch.no_grad(): test_output = model(test_input) print(test_output.shape) ``` 需要注意的是,以上代码中使用的`CustomDataset`是自定义的数据集类,需要根据实际情况进行修改。同时,由于高光谱图像的通道数较多,为了简化示例代码,将输出通道数设置为30,实际应用中需要根据数据集的实际情况进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值