概率论与数理统计-读书笔记1

洗稿浙大版的读书笔记

日常心慌, 赶快多读点这个啥

第一章 概率论的基本概念

§ 1 随机实验

随机实验

  • 可以在相同条件下重复实验
  • 每次实验的可能结果不止一个, 并且能事先确定所以可能的结果
  • 每次实验之前不能确定会出现哪一个结果

§ 2 样本空间, 随机事件

(一) 样本空间

样本空间:将随机试验E的所有可能结果组成的集合成为E的样本空间, 记为S, 样本空间的每个元素, 成为样本点

(二) 随机事件

随机事件:简称事件, 即S的字迹

基本事件:由一个样本点组成的单点集

其他: 必然事件, 不可能事件

(三) 事件间的关系与事件的运算

几种关系:

  • 相等
  • 和事件 A ∪ B = { x ∣ x ∈ A  或  x ∈ B } A \cup B=\{x \mid x \in A \text { 或 } x \in B\} AB={xxA  xB}
  • 积事件 A ∩ B = { x ∣ x ∈ A  且  x ∈ B } A \cap B=\{x \mid x \in A \text { 且 } x \in B\} AB={xxA  xB}
  • 差事件 A − B = { x ∣ x ∈ A  且  x ∉ B } A-B=\{x \mid x \in A \text { 且 } x \notin B\} AB={xxA  x/B}
  • 互斥事件 A ∩ B = ∅ A \cap B=\varnothing AB=
  • 逆事件(两个事件必有一个发生, 且仅有一个) A ∪ B = S A \cup B=S AB=S A ∩ B = ∅ A \cap B=\varnothing AB=

几种运算定律

  • 交换律: A ∪ B = B ∪ A ; A ∩ B = B ∩ A A \cup B=B \cup A ; A \cap B=B \cap A AB=BA;AB=BA

  • 结合律 : A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C : A \cup(B \cup C)=(A \cup B) \cup C :A(BC)=(AB)C
    A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A \cap(B \cap C)=(A \cap B) \cap C A(BC)=(AB)C

  • 分配律 : A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) : A \cup(B \cap C)=(A \cup B) \cap(A \cup C) :A(BC)=(AB)(AC)

    A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A \cap(B \cup C)=(A \cap B) \cup(A \cap C) A(BC)=(AB)(AC)

  • 德摩根律 : A ∪ B ‾ = A ˉ ∩ B ˉ ; A ∩ B ‾ = A ˉ ∪ B ˉ : \overline{A \cup B}=\bar{A} \cap \bar{B} ; \quad \overline{A \cap B}=\bar{A} \cup \bar{B} :AB=AˉBˉ;AB=AˉBˉ

  • 对减法运算满足: A − B = A B ˉ A-B=A \bar{B} AB=ABˉ

注释: 注意分辨结合律与分配律的符号啊!

§ 3 频率与概率

(一) 频率

频率的定义: 在相同条件下, 进行了n次实验, 在其中, 事件A发生的次数 n A n_A nA称为事件A发生的频数, 比值 n a / n n_a/n na/n称为事件A发生的频率, 并记成 f n ( A ) f_{n}(A) fn(A)

三大基本性质

  1. 0 ⩽ f n ( A ) ⩽ 1 0 \leqslant f_{n}(A) \leqslant 1 0fn(A)1

  2. f n ( S ) = 1 f_{n}(S)=1 fn(S)=1

  3. A 1 , A 2 , ⋯   , A k A_{1}, A_{2}, \cdots, A_{k} A1,A2,,Ak 是两两互不相容的事件,则

    f n ( A 1 ∪ A 2 ∪ ⋯ ∪ A k ) = f n ( A 1 ) + f n ( A 2 ) + ⋯ + f n ( A k ) f_{n}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right)=f_{n}\left(A_{1}\right)+f_{n}\left(A_{2}\right)+\cdots+f_{n}\left(A_{k}\right) fn(A1A2Ak)=fn(A1)+fn(A2)++fn(Ak)

(二) 概率

概率的定义: 设E是随机实验, S是样本空间, 对于E的每一事件A赋予一个实数, 记为 P ( A ) P(A) P(A), 称为事件A的概率.

三大基本性质

  1. 非负性, 即大于0
  2. 规范性, 即 P ( S ) = 1 P(S) = 1 P(S)=1
  3. 可列可加性, 设 A 1 , A 2 , ⋯ A_{1}, A_{2}, \cdots A1,A2, 是两两互不相容的事件, 即对于 A i A j = ∅ A_{i} A_{j}=\varnothing AiAj=, i ≠ j , i , j = 1 , 2 , ⋯   , i \neq j, i, j=1,2, \cdots, i=j,i,j=1,2,, P ( A 1 ∪ A 2 ∪ ⋯   ) = P ( A 1 ) + P ( A 2 ) + ⋯ P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots P(A1A2)=P(A1)+P(A2)+

可以由上推出以下几个性质

  • P ( ∅ ) = 0 P(\varnothing)=0 P()=0

  • (有限可加性) 若 A 1 , A 2 , ⋯   , A n A_{1}, A_{2}, \cdots, A_{n} A1,A2,,An 是两两互不相容的事件,则有 P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ) = P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A n ) P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right) P(A1A2An)=P(A1)+P(A2)++P(An)

  • A , B A, B A,B 是两个事件,若 A ⊂ B A \subset B AB,则有

    P ( B − A ) = P ( B ) − P ( A ) P(B-A)=P(B)-P(A) P(BA)=P(B)P(A)

    P ( B ) ⩾ P ( A ) P(B) \geqslant P(A) P(B)P(A)

  • 对任意事件A, P ( A ) ⩽ 1 P(A) \leqslant 1 P(A)1

  • P ( A ˉ ) = 1 − P ( A ) P(\bar{A})=1-P(A) P(Aˉ)=1P(A)

  • 对任意事件A, B, P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B)=P(A)+P(B)-P(A B) P(AB)=P(A)+P(B)P(AB)

自己的补充: 当A, B同时发生时, C必然发生, 即为 P ( A B ) ⩽ P ( C ) P(AB)\leqslant P(C) P(AB)P(C)

§ 4 古典概型(等可能概型)

古典概型性质:

  1. 试验的样本空间只包含有限个元素
  2. 试验中每个基本事件发生的可能性相同

实验推断原理: 概率很小的事件在一次实验中实际上几乎是不发生的

§ 5 条件概率

(一) 条件概率

条件概率的定义:

A , B A, B A,B 是两个事件,且 P ( A ) > 0 , P(A)>0, P(A)>0,
P ( B ∣ A ) = P ( A B ) P ( A ) P(B \mid A)=\frac{P(A B)}{P(A)} P(BA)=P(A)P(AB)
为在事件 A 发生的条件下事件 B 发生的条件概率。

三大性质:

  1. 非负性
  2. 规范性
  3. 可列可加性

(二) 乘法定理

乘法定理: 设 P ( A ) > 0 P(A)>0 P(A)>0,则有 P ( A B ) = P ( B ∣ A ) P ( A ) P(A B)=P(B \mid A) P(A) P(AB)=P(BA)P(A)

(三) 全概率公式和贝叶斯公式

划分的定义:

设 S 为试验 E 的样本空间 , B 1 , B 2 , ⋯   , B n B_{1}, B_{2}, \cdots, B_{n} B1,B2,,Bn E E E 的一组事件.若

(i) B i B j = ∅ , i ≠ j , i , j = 1 , 2 , ⋯   , n B_{i} B_{j}=\varnothing, i \neq j, i, j=1,2, \cdots, n BiBj=,i=j,i,j=1,2,,n

(ii) B 1 ∪ B 2 ∪ ⋯ ∪ B n = S B_{1} \cup B_{2} \cup \cdots \cup B_{n}=S B1B2Bn=S

则称 B 1 , B 2 , ⋯   , B n B_{1}, B_{2}, \cdots, B_{n} B1,B2,,Bn 为样本空间 S S S 的一个划分.


全概率公式 :

设试验 E 的样本空间为 S,A 为 E 的事件, B 1 , B 2 , ⋯   , B n B_{1}, B_{2}, \cdots, B_{n} B1,B2,,Bn S S S 的一个划分,且 P ( B i ) > 0 ( i = 1 , 2 , ⋯   , n ) , P\left(B_{i}\right)>0(i=1,2, \cdots, n), P(Bi)>0(i=1,2,,n),

P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + ⋯ + P ( A ∣ B n ) P ( B n ) \begin{array}{c} P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\cdots+ \\ P\left(A \mid B_{n}\right) P\left(B_{n}\right) \end{array} P(A)=P(AB1)P(B1)+P(AB2)P(B2)++P(ABn)P(Bn)

称为全概率公式。

用处:用于计算由若干原因引起的复杂事件概率


贝叶斯公式:

设试验 E 的样本空间为 S.A 为 E 的事件, B 1 , B 2 , ⋯   , B n B_{1}, B_{2}, \cdots, B_{n} B1,B2,,Bn S S S 的一
个划分,且 P ( A ) > 0 , P ( B i ) > 0 ( i = 1 , 2 , ⋯   , n ) , P(A)>0, P\left(B_{i}\right)>0(i=1,2, \cdots, n), P(A)>0,P(Bi)>0(i=1,2,,n),
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) , i = 1 , 2 , ⋯   , n P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{j=1}^{n} P\left(A \mid B_{j}\right) P\left(B_{j}\right)}, \quad i=1,2, \cdots, n P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi),i=1,2,,n
称为贝叶斯 (Bayes)公式

(可以通过条件概率+乘法定理+全概率公式加以证明)

用处: 用来计算在复杂事件已发生的条件下, 某一种原因发生的条件概率

§ 6 独立性

独立的定义:

A , B A, B A,B 是两事件,如果满足等式
P ( A B ) = P ( A ) P ( B ) P(A B)=P(A) P(B) P(AB)=P(A)P(B)
则称事件 A,B 相互独立,简称 A,B 独立。

两大定理:

  1. A , B A, B A,B 是两事件,且 P ( A ) > 0. P(A)>0 . P(A)>0. A , B A, B A,B 相互独立,则 P ( B ∣ A ) = P(B \mid A)= P(BA)=
    P ( B ) . P(B) . P(B). 反之亦然.

  2. 若事件 A 与 B 相互独立,则下列各对事件也相互独立:

    A A A B ˉ , A ˉ \bar{B}, \bar{A} Bˉ,Aˉ B , A ˉ B, \bar{A} B,Aˉ B ˉ \bar{B} Bˉ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值