概率论与数理统计-读书笔记4

随机变量的数字特征

数学期望

数学期望的定义

对于离散型: 设离散型随机变量X的分布律为 P { X = x k } = p k , k = 1 , 2 , ⋯ P\left\{X=x_{k}\right\}=p_{k}, \quad k=1,2, \cdots P{X=xk}=pk,k=1,2,

若级数 ∑ k = 1 ∞ x k p k \sum_{k=1}^{\infty} x_{k} p_{k} k=1xkpk绝对收敛, 则称级数 ∑ k = 1 ∞ x k p k \sum_{k=1}^{\infty} x_{k} p_{k} k=1xkpk 的和为随机变量 X X X 的数学期望,记为 E ( X ) E(X) E(X)


E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty} x_{k} p_{k} E(X)=k=1xkpk
对于连续型: 设连续型随机变量 X 的概率密度为 f ( x ) , f(x), f(x), 若积分
∫ − ∞ ∞ x f ( x ) d x \int_{-\infty}^{\infty} x f(x) \mathrm{d} x xf(x)dx
绝对收敛,则称积分 ∫ − ∞ ∞ x f ( x ) d x \int_{-\infty}^{\infty} x f(x) \mathrm{d} x xf(x)dx 的值为随机变量 X X X 的数学期望,记为 E ( X ) E(X) E(X)


E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x E(X)=xf(x)dx
数学期望简称期望均值

随机变量的函数的数学期望

定理: 设 Y 是随机变量 X 的函数 : Y = g ( X ) ( g Y=g(X)(g Y=g(X)(g 是连续函数)。

  1. 如果 X 是离散型随机变量,它的分布律为 P { X = x k } = p k , k = 1 , 2 , ⋯ P\left\{X=x_{k}\right\}=p_{k}, k=1,2, \cdots P{X=xk}=pk,k=1,2,, 若 ∑ k = 1 ∞ g ( x k ) p k \sum_{k=1}^{\infty} g\left(x_{k}\right) p_{k} k=1g(xk)pk 绝对收敛 , , , 则有
    E ( Y ) = E [ g ( X ) ] = ∑ k = 1 ∞ g ( x k ) p k E(Y)=E[g(X)]=\sum_{k=1}^{\infty} g\left(x_{k}\right) p_{k} E(Y)=E[g(X)]=k=1g(xk)pk

  2. 如果 X 是连续型随机变量,它的概率密度为 f ( x ) , f(x), f(x), ∫ − ∞ ∞ g ( x ) f ( x ) d x \int_{-\infty}^{\infty} g(x) f(x) \mathrm{d} x g(x)f(x)dx绝对收敛, 则有
    E ( Y ) = E [ g ( X ) ] = ∫ − ∞ ∞ g ( x ) f ( x ) d x E(Y)=E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) \mathrm{d} x E(Y)=E[g(X)]=g(x)f(x)dx

应用: 求E(Y)时, 就不用再算出Y的分布律或概率密度了

数学期望的重要性质

  • 设 C 是常数,则有 E ( C ) = C E(C)=C E(C)=C
  • 设 X 是一个随机变量,C 是常数,则有 E ( C X ) = C E ( X ) E(C X)=C E(X) E(CX)=CE(X)
  • 设 X,Y 是两个随机变量,则有 E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
  • 设 X,Y 是相互独立的随机变量,则有 E ( X Y ) = E ( X ) E ( Y ) E(X Y)=E(X) E(Y) E(XY)=E(X)E(Y)

g

方差 variance

定义

设 X 是一个随机变量,若 E { [ X − E ( X ) ] 2 } E\left\{[X-E(X)]^{2}\right\} E{[XE(X)]2} 存在,则称 E { [ X − E ( X ) ] 2 } E\{[X-\left.E(X)]^{2}\right\} E{[XE(X)]2} X X X 的方差 , , , 记为 D ( X ) D(X) D(X) Var ⁡ ( X ) , \operatorname{Var}(X), Var(X),
D ( X ) = Var ⁡ ( X ) = E { [ X − E ( X ) ] 2 } D(X)=\operatorname{Var}(X)=E\left\{[X-E(X)]^{2}\right\} D(X)=Var(X)=E{[XE(X)]2}
方差实际上就是随机g方差

在应用上还引入量 D ( X ) \sqrt{D(X)} D(X) ,记为 σ ( X ) \sigma(X) σ(X)

相关公式

**对于离散型随机变量: **
D ( X ) = ∑ k = 1 ∞ [ x k − E ( X ) ] 2 p k D(X)=\sum_{k=1}^{\infty}\left[x_{k}-E(X)\right]^{2} p_{k} D(X)=k=1[xkE(X)]2pk
(方差实际上就是随机变量 X 的函数 g ( X ) = ( X − E ( X ) ) 2 g(X)=(X-E(X))^{2} g(X)=(XE(X))2的数学期望)


对于连续型随机变量:
D ( X ) = ∫ − ∞ ∞ [ x − E ( X ) ] 2 f ( x ) d x D(X)=\int_{-\infty}^{\infty}[x-E(X)]^{2} f(x) \mathrm{d} x D(X)=[xE(X)]2f(x)dx
其中 f ( x ) f(x) f(x) X X X 的概率密度.


随机变量 X 的方差可按下列公式计算:
D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E\left(X^{2}\right)-[E(X)]^{2} D(X)=E(X2)[E(X)]2
证明:
D ( X ) = E { [ X − E ( X ) ] 2 } = E { X 2 − 2 X E ( X ) + [ E ( X ) ] 2 } = E ( X 2 ) − 2 E ( X ) E ( X ) + [ E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 \begin{aligned} D(X) &=E\left\{[X-E(X)]^{2}\right\}=E\left\{X^{2}-2 X E(X)+[E(X)]^{2}\right\} \\ &=E\left(X^{2}\right)-2 E(X) E(X)+[E(X)]^{2} \\ &=E\left(X^{2}\right)-[E(X)]^{2} \end{aligned} D(X)=E{[XE(X)]2}=E{X22XE(X)+[E(X)]2}=E(X2)2E(X)E(X)+[E(X)]2=E(X2)[E(X)]2

方差的重要性质

  • 设 C 是常数,则 D ( C ) = 0 D(C)=0 D(C)=0

  • 设 X 是随机变量,C 是常数,则有:

    • D ( C X ) = C 2 D ( X ) D(C X)=C^{2} D(X) D(CX)=C2D(X)
    • D ( X + C ) = D ( X ) D(X+C)=D(X) D(X+C)=D(X)
  • 设 X,Y 是两个随机变量,则有
    D ( X + Y ) = D ( X ) + D ( Y ) + 2 E { ( X − E ( X ) ) ( Y − E ( Y ) ) } D(X+Y)=D(X)+D(Y)+2 E\{(X-E(X))(Y-E(Y))\} D(X+Y)=D(X)+D(Y)+2E{(XE(X))(YE(Y))}

  • D ( X ) = 0 D(X)=0 D(X)=0 的充要条件是 X X X 以概率 1 取常数 E ( X ) , E(X), E(X),
    P { X = E ( X ) } = 1 P\{X=E(X)\}=1 P{X=E(X)}=1

切比雪夫(Chebyshev)不等式

定理: 设随机变量 X 具有数学期望 E ( X ) = μ , E(X)=\mu, E(X)=μ, 方差 D ( X ) = σ 2 , D(X)=\sigma^{2}, D(X)=σ2, 则对于任意正数 ε \varepsilon ε, 不等式
P { ∣ X − μ ∣ ⩾ ε } ⩽ σ 2 ε 2 P\{|X-\mu| \geqslant \varepsilon\} \leqslant \frac{\sigma^{2}}{\varepsilon^{2}} P{Xμε}ε2σ2
成立.

这一不等式称为切比雪夫(Chebyshev)不等式。

协方差及相关系数

协方差(Covariance)的定义

E { [ X − E ( X ) ] [ Y − E ( Y ) ] } E\{[X-E(X)][Y-E(Y)]\} E{[XE(X)][YE(Y)]} 称为随机变量 X X X Y Y Y 的协方差. 记为 Cov( X , Y X, Y X,Y ), 即
Cov ⁡ ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } \operatorname{Cov}(X, Y)=E\{[X-E(X)][Y-E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]}


ρ X Y = Cov ⁡ ( X , Y ) D ( X ) D ( Y ) \rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}} ρXY=D(X) D(Y) Cov(X,Y)
称为随机变量 X 与 Y 的相关系数

协方差的相关式子

  • Cov ⁡ ( X , Y ) = Cov ⁡ ( Y , X ) , Cov ⁡ ( X , X ) = D ( X ) \operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X), \quad \operatorname{Cov}(X, X)=D(X) Cov(X,Y)=Cov(Y,X),Cov(X,X)=D(X)
  • Cov ⁡ ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y) Cov(X,Y)=E(XY)E(X)E(Y) (常用来计算协方差)

协方差的两大性质

  • Cov ⁡ ( a X , b Y ) = a b Cov ⁡ ( X , Y ) , a , b \operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y), a, b Cov(aX,bY)=abCov(X,Y),a,b 是常数.
  • Cov ⁡ ( X 1 + X 2 , Y ) = Cov ⁡ ( X 1 , Y ) + Cov ⁡ ( X 2 , Y ) \operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

相关系数的两个定理

  • ∣ ρ X Y ∣ ⩽ 1 \left|\rho_{X Y}\right| \leqslant 1 ρXY1
  • ∣ ρ X Y ∣ = 1 \left|\rho_{X Y}\right|=1 ρXY=1 的充要条件晃,存在常数 a , b a, b a,b 使 P { Y = a + b X } = 1 P\{Y=a+b X\}=1 P{Y=a+bX}=1

相关系数可以用来表示两个变量的线性相关程度, 当 ρ X Y = 0 \rho_{X Y}=0 ρXY=0 , , , X X X Y Y Y 不相关.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值