概率论与数理统计-读书笔记3

第三章 多维随机变量及其分布

§ 1 二维随机变量

二维随机变量定义: 设E是一个随机试验, 它的样本空间是S={e}, 设 X = X ( e ) X=X(e) X=X(e) Y = Y ( e ) Y=Y(e) Y=Y(e)是定义在S上的随机变量, 由它们构成的一个向量 ( X , Y ) (X, Y) (X,Y),叫做二维随机向量二维随机变量.

二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数的定义: 又称为随机变量X, Y的联合分布函数.设( X , Y X, Y X,Y )是二维随机变量,对于任意实数 x , y , x, y, x,y, 二元函数

F ( x , y ) = P { ( X ⩽ x ) ∩ ( Y ⩽ y ) } =  记成  P { X ⩽ x , Y ⩽ y } F(x, y)=P\{(X \leqslant x) \cap(Y \leqslant y)\} \stackrel{\text { 记成 }}{=} P\{X \leqslant x, Y \leqslant y\} F(x,y)=P{(Xx)(Yy)}= 记成 P{Xx,Yy}

四大基本性质:

  1. F ( x , y ) F(x, y) F(x,y) 是变量 x x x y y y 的不减函数

  2. 0 ⩽ F ( x , y ) ⩽ 1 0 \leqslant F(x, y) \leqslant 1 0F(x,y)1, 且

    对于任意固定的 y , F ( − ∞ , y ) = 0 y, F(-\infty, y)=0 y,F(,y)=0

    对于任意画定的 x , F ( x , − ∞ ) = 0 x, F(x,-\infty)=0 x,F(x,)=0
    F ( − ∞ , − ∞ ) = 0 , F ( ∞ , ∞ ) = 1 F(-\infty,-\infty)=0, F(\infty, \infty)=1 F(,)=0,F(,)=1

  3. F ( x + 0 , y ) = F ( x , y ) , F ( x , y + 0 ) = F ( x , y ) , F(x+0, y)=F(x, y), F(x, y+0)=F(x, y), F(x+0,y)=F(x,y),F(x,y+0)=F(x,y), F ( x , y ) F(x, y) F(x,y) 关于 x x x 右连续,关于 y y y 也右连续.

  4. 对于任意 ( x 1 , y 1 ) , ( x 2 , y 2 ) , x 1 < x 2 , y 1 < y 2 , \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), x_{1}<x_{2}, y_{1}<y_{2}, (x1,y1),(x2,y2),x1<x2,y1<y2, 下述不等式成立: F ( x 2 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) − F ( x 1 , y 2 ) ⩾ 0 F\left(x_{2}, y_{2}\right)-F\left(x_{2}, y_{1}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right) \geqslant 0 F(x2,y2)F(x2,y1)+F(x1,y1)F(x1,y2)0

离散型的随机变量的定义: 二维随机变量 ( X , Y ) (X, Y) (X,Y)所有可能取到的值是有限对或可列无限多对

二维离散型随机变量 ( X , Y ) (X, Y) (X,Y)的分布律: 又称为随机变量X和Y的联合分布律

二维离散型随机变量 ( X , Y ) (X, Y) (X,Y)的分布函数: F ( x , y ) = ∑ x i ⩽ x y j ⩽ y p i j F(x, y)=\sum_{x_{i} \leqslant x y_{j} \leqslant y} p_{i j} F(x,y)=xixyjypij

连续型的二维随机变量的分布函数: F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) \mathrm{d} u \mathrm{d} v F(x,y)=yxf(u,v)dudv

其中, $ f(u, v) 为 ∗ ∗ 二 维 离 散 型 随 机 变 量 为**二维离散型随机变量 (X, Y)$的概率密度**

概率密度的四大性质:

  1. f ( x , y ) ⩾ 0 f(x, y) \geqslant 0 f(x,y)0

  2. ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y = F ( ∞ , ∞ ) = 1 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d} x \mathrm{d} y=F(\infty, \infty)=1 f(x,y)dxdy=F(,)=1

  3. 设 G 是 x O y x O y xOy 平面上的区域,点 ( X , Y ) (X, Y) (X,Y) 落在 G G G 内的概率为
    P { ( X , Y ) ∈ G } = ∬ G f ( x , y ) d x d y P\{(X, Y) \in G\}=\iint_{G} f(x, y) \mathrm{d} x \mathrm{d} y P{(X,Y)G}=Gf(x,y)dxdy

  4. f ( x , y ) f(x, y) f(x,y) 在点 ( x , y ) (x, y) (x,y) 连续 , , , 则有
    ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) \frac{\partial^{2} F(x, y)}{\partial x \partial y}=f(x, y) xy2F(x,y)=f(x,y)

§ 2 边缘分布

二维离散型随机变量 ( X , Y ) (X, Y) (X,Y)的边缘分布函数: 随机变量X, Y各自的分布函数

边缘分布函数和分布函数的关系:
F X ( x ) = P { X ⩽ x } = P { X ⩽ x , Y < ∞ } = F ( x , ∞ ) F_{X}(x)=P\{X \leqslant x\}=P\{X \leqslant x, Y<\infty\}=F(x, \infty) FX(x)=P{Xx}=P{Xx,Y<}=F(x,)
就是说,只要在函数 F ( x , y ) F(x, y) F(x,y) 中令 y → ∞ y \rightarrow \infty y 就能得到 F X ( x ) F_{X}(x) FX(x)

边缘分布律:

X的分布律: P { X = x i } = ∑ j = 1 ∞ p i j , i = 1 , 2 , ⋯ P\left\{X=x_{i}\right\}=\sum_{j=1}^{\infty} p_{i j}, \quad i=1,2, \cdots P{X=xi}=j=1pij,i=1,2,

Y的分布律: P { Y = y j } = ∑ i = 1 ∞ p i j , j = 1 , 2 , ⋯ P\left\{Y=y_{j}\right\}=\sum_{i=1}^{\infty} p_{i j}, \quad j=1,2, \cdots P{Y=yj}=i=1pij,j=1,2,

分别称 p i . ( i = 1 , 2 , ⋯   ) p_{i} .(i=1,2, \cdots) pi.(i=1,2,) p . j ( j = 1 , 2 , ⋯   ) p . j(j=1,2, \cdots) p.j(j=1,2,) 为( X , Y X, Y X,Y ) 关于 X X X 和关于 Y Y Y边缘分布律(注意, 记号 p i . p_{i} . pi. 中的“・"表示 p i . p_{i} . pi. 是由 p i j p_{i j} pij 关于 j j j 求和后得到的;同样 , p . , p . ,p. 是由 p i j p_{i j} pij 关于 i i i 求和后得到的).

边缘概率密度:

X的概率密度:
f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y fX(x)=f(x,y)dy
Y的概率密度:
f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} x fY(y)=f(x,y)dx
分别称 f X ( x ) , f Y ( y ) f_{X}(x), f_{Y}(y) fX(x),fY(y) ( X , Y ) (X, Y) (X,Y) 关于 X X X 和关于 Y 的边缘概率密度.

§ 3 条件分布

**条件分布的定义: ** 设 ( X , Y X, Y X,Y ) 是二维离散型 随机变量,对于固定的 j , j, j, P { Y = y j } > 0 P\left\{Y=y_{j}\right\}>0 P{Y=yj}>0, 则称
P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p i j , i = 1 , 2 , ⋯ P\left\{X=x_{i} \mid Y=y_{j}\right\}=\frac{P\left\{X=x_{i}, Y=y_{j}\right\}}{P\left\{Y=y_{j}\right\}}=\frac{p_{i j}}{p_{i j}}, i=1,2, \cdots P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=pijpij,i=1,2,
为在 Y = y j Y=y_j Y=yj 条件下随机变量 X 的条件分布律。

条件分布具有的分布律性质:

  1. P { X = x i ∣ Y = y j } ⩾ 0 P\left\{X=x_{i} \mid Y=y_{j}\right\} \geqslant 0 P{X=xiY=yj}0
  2. ∑ i = 1 ∞ P { X = x i ∣ Y = y j } = ∑ i = 1 ∞ p i j p i j = 1 p i j ∑ i = 1 ∞ p i j = p j p i j = 1 \sum_{i=1}^{\infty} P\left\{X=x_{i} \mid Y=y_{j}\right\}=\sum_{i=1}^{\infty} \frac{p_{i j}}{p_{i j}}=\frac{1}{p_{i j}} \sum_{i=1}^{\infty} p_{i j}=\frac{p_{j}}{p_{i j}}=1 i=1P{X=xiY=yj}=i=1pijpij=pij1i=1pij=pijpj=1

条件概率密度的定义: 设二维随机变量 ( X , Y ) (X,Y) (XY)的概率密度为 f ( x , y ) , ( X , Y ) f(x, y),(X, Y) f(x,y),(X,Y) 关于 Y Y Y 的边缘概率密度为 f Y ( y ) . f_{Y}(y) . fY(y). 若对于固定的 y , f Y ( y ) > 0 , y, f_{Y}(y)>0, y,fY(y)>0, 则称 f ( x , y ) f Y ( y ) \frac{f(x, y)}{f_{Y}(y)} fY(y)f(x,y) 为在 Y = y Y=y Y=y 的条件下 X 的条件概率密度,记
f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)} fXY(xy)=fY(y)f(x,y)

§ 4 相互独立的随机变量

定义: 设 F ( x , y ) F(x, y) F(x,y) F X ( x ) , F Y ( y ) F_{X}(x), F_{Y}(y) FX(x),FY(y) 分别是二维随机变量 ( X , Y ) (X, Y) (X,Y) 的分布函数及边缘分布 函数. 若对于所有 x , y x, y x,y
P { X ⩽ x , Y ⩽ y } = P { X ⩽ x } P { Y ⩽ y } P\{X \leqslant x, Y \leqslant y\}=P\{X \leqslant x\} P\{Y \leqslant y\} P{Xx,Yy}=P{Xx}P{Yy}
即,
F ( x , y ) = F X ( x ) F Y ( y ) F(x, y)=F_{X}(x) F_{Y}(y) F(x,y)=FX(x)FY(y)
则称随机变量 X 和 Y 是相互独立的

§ 5 两个随机变量的函数分布

(一) Z = X + Y Z = X+Y Z=X+Y 的分布

设( X , Y X, Y X,Y ) 是二维连续型随机变量 , , , 它具有概率密度 f ( x , y ) . f(x, y) . f(x,y). Z = X + Y Z=X+Y Z=X+Y 仍为连续型随机变量,其概率密度为
f X + Y ( z ) = ∫ − ∞ ∞ f ( z − y , y ) d y f_{X+Y}(z)=\int_{-\infty}^{\infty} f(z-y, y) \mathrm{d} y fX+Y(z)=f(zy,y)dy

f X + Y ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x f_{X+Y}(z)=\int_{-\infty}^{\infty} f(x, z-x) \mathrm{d} x fX+Y(z)=f(x,zx)dx

卷积公式:

又若 X 和 Y 相互独立,设 (X,Y) 关于 X,Y 的边缘密度分别为 f X ( x ) f_{X}(x) fX(x), f Y ( y ) f_{Y}(y) fY(y), 则
f X + Y ( z ) = ∫ − ∞ ∞ f X ( z − y ) f Y ( y ) d y f_{X+Y}(z)=\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) \mathrm{d} y fX+Y(z)=fX(zy)fY(y)dy

f X + Y ( z ) = ∫ − ∞ ∞ f X ( x ) f Y ( z − x ) d x f_{X+Y}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x fX+Y(z)=fX(x)fY(zx)dx
称为 f X f_{X} fX f Y f_{Y} fY 的卷积公式 , , , 记为 f X ∗ f Y , f_{X} * f_{Y}, fXfY,
f X ∗ f Y = ∫ − ∞ ∞ f X ( z − y ) f Y ( y ) d y = ∫ − ∞ ∞ f X ( x ) f Y ( z − x ) d x f_{X} * f_{Y}=\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) \mathrm{d} y=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x fXfY=fX(zy)fY(y)dy=fX(x)fY(zx)dx

(二) Z = Y X Z=\frac{Y}{X} Z=XY 的分布 , Z = X Y , Z=X Y ,Z=XY 的分布

设(X,Y)是二维连续型随机变量,它具有概率密度 f ( x , y ) , f(x, y), f(x,y), Z = Y X Z=\frac{Y}{X} Z=XY, Z = X Y Z=X Y Z=XY 仍为连续型随机变量,其概率密度分别为
f Y / X ( z ) = ∫ − ∞ ∞ ∣ x ∣ f ( x , x z ) d x f_{Y / X}(z)=\int_{-\infty}^{\infty}|x| f(x, x z) \mathrm{d} x fY/X(z)=xf(x,xz)dx

f X Y ( z ) = ∫ − ∞ ∞ 1 ∣ x ∣ f ( x , z x ) d x f_{X Y}(z)=\int_{-\infty}^{\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) \mathrm{d} x fXY(z)=x1f(x,xz)dx

(三) M = m a x { X , Y } M=max \{X, Y\} M=max{X,Y} N = m i n { X , Y } N=min \{X, Y\} N=min{X,Y}的分布

设 X,Y 是两个相互独立的随机变量,它们的分布函数分别为 F X ( x ) F_{X}(x) FX(x) F Y ( y ) . F_{Y}(y) . FY(y). 现在来求 M = max ⁡ { X , Y } M=\max \{X, Y\} M=max{X,Y} N = min ⁡ { X , Y } N=\min \{X, Y\} N=min{X,Y} 的分布函数.

由于 M = max ⁡ { X , Y } M=\max \{X, Y\} M=max{X,Y} 不大于 z z z 等价于 X X X Y Y Y 都不大于 z z z,故有
P { M ⩽ z } = P { X ⩽ z , Y ⩽ z } P\{M \leqslant z\}=P\{X \leqslant z, Y \leqslant z\} P{Mz}=P{Xz,Yz}
又由于 X 和 Y 相互独立,得到 M = max ⁡ { X , Y } M=\max \{X, Y\} M=max{X,Y} 的分布 函数为
F max ⁡ ( z ) = P { M ⩽ z } = P { X ⩽ z , Y ⩽ z } = P { X ⩽ z } P { Y ⩽ z } F_{\max }(z)=P\{M \leqslant z\}=P\{X \leqslant z, Y \leqslant z\}=P\{X \leqslant z\} P\{Y \leqslant z\} Fmax(z)=P{Mz}=P{Xz,Yz}=P{Xz}P{Yz}
即有 F max ⁡ ( z ) = F X ( z ) F Y ( z ) F_{\max }(z)=F_{X}(z) F_{Y}(z) Fmax(z)=FX(z)FY(z)

类似地,可得 N = min ⁡ { X , Y } N=\min \{X, Y\} N=min{X,Y} 的分布函数为
F min ⁡ ( z ) = P { N ⩽ z } = 1 − P { N > z } = 1 − P { X > z , Y > z } = 1 − P { X > z } ⋅ P { Y > z } \begin{aligned} F_{\min }(z) &=P\{N \leqslant z\}=1-P\{N>z\} \\ &=1-P\{X>z, Y>z\}=1-P\{X>z\} \cdot P\{Y>z\} \end{aligned} Fmin(z)=P{Nz}=1P{N>z}=1P{X>z,Y>z}=1P{X>z}P{Y>z}

F min ⁡ ( z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] F_{\min }(z)=1-\left[1-F_{X}(z)\right]\left[1-F_{Y}(z)\right] Fmin(z)=1[1FX(z)][1FY(z)]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值