概率论与数理统计-读书笔记2

第二章 随机变量及其分布

§ 1 随机变量

定义: 设随机试验的样本空间为 S = { e } S=\{e\} S={e}. X = X ( e ) X=X(e) X=X(e)是定义在样本空间上的实值单值函数.称 X = X ( e ) X=X(e) X=X(e)为随机变量

§ 2 离散型随机变量及其分布律

离散型随机变量的定义: 能取的值是有限个或者可列的无限多个的随机变量

离散型随机变量X的分布律: P { X = x k } = p k , k = 1 , 2 , ⋯ P\left\{X=x_{k}\right\}=p_{k}, k=1,2, \cdots P{X=xk}=pk,k=1,2,

X x 1 x 2 ⋯ x n ⋯ p k p 1 p 2 ⋯ p n ⋯ \begin{array}{c|ccccc} X & x_{1} & x_{2} & \cdots & x_{n} & \cdots \\ \hline p_{k} & p_{1} & p_{2} & \cdots & p_{n} & \cdots \end{array} Xpkx1p1x2p2xnpn

(可直观表示随机变量X取各个值得概率的规律)

三种重要的离散型随机变量

(一) (0-1)分布

定义:随机变量X只可能取0和1两个值, 其分布律为 P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 ( 0 < p < 1 ) P\{X=k\}=p^{k}(1-p)^{1-k}, k=0,1 \quad(0<p<1) P{X=k}=pk(1p)1k,k=0,1(0<p<1)

X 0 1 p k 1 − p p \begin{array}{c|cc} X & 0 & 1 \\ \hline p_{k} & 1-p & p \end{array} Xpk01p1p

(二) 伯努利试验\二项分布

伯努利试验定义: 试验E只有两个可能的结果.

n重伯努利试验:如果将E独立重复地进行n次, 则称这一串试验为n重伯努利试验

(很重要的数学模型)

其分布律:

P { X = k } = ( n k ) p k q n − k , k = 0 , 1 , 2 , ⋯   , n P\{X=k\}=\left(\begin{array}{l} n \\ k \end{array}\right) p^{k} q^{n-k}, k=0,1,2, \cdots, n P{X=k}=(nk)pkqnk,k=0,1,2,,n

注意到 ( n k ) p k q n − k \left(\begin{array}{l}n \\ k\end{array}\right) p^{k} q^{n-k} (nk)pkqnk 好是二项式 ( p + q ) n (p+q)^{n} (p+q)n展开式中出现 p k p^{k} pk 的那一项

我们称随机变量X服从参数为n,p的二项分布,并记为 X ∼ b ( n , p ) X \sim b(n, p) Xb(n,p)

(三) 泊松分布

设随机变量 X 所有可能取的值为 0,1,2,.",而取各个值的概率为

P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , ⋯ P\{X=k\}=\frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k !}, k=0,1,2, \cdots P{X=k}=k!λkeλ,k=0,1,2,

其中 λ > 0 \lambda>0 λ>0 是常数.则称 X X X 服从参数为 λ \lambda λ的泊松分布 , , ,记为 X ∼ π ( λ ) X \sim \pi(\lambda) Xπ(λ)

泊松分布和二项分布的关系:

lim ⁡ n → ∞ ( n k ) p n k ( 1 − p n ) n − k = λ k e − λ k ! \lim _{n \rightarrow \infty}\left(\begin{array}{l} n \\ k \end{array}\right) p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k !} nlim(nk)pnk(1pn)nk=k!λkeλ

§ 3 随机变量的分布函数

使用分布函数的原因: 对于非离散型随机变量X, 由于无法一一描述其取值, 所以不能用分布律来描述它.

分布函数的定义: 设 X 是一个随机变量,x 是任意实数,函数 F ( x ) = P { X ⩽ x } , − ∞ < x < ∞ F(x)=P\{X \leqslant x\},-\infty<x<\infty F(x)=P{Xx},<x<

成为X的分布函数.

两个基本性质:

  1. **F(x)**是一个不减函数

  2. 0 ⩽ F ( x ) ⩽ 1 0 \leqslant F(x) \leqslant 1 0F(x)1, 且

    F ( − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 F ( ∞ ) = lim ⁡ x → ∞ F ( x ) = 1 \begin{aligned} F(-\infty) &=\lim _{x \rightarrow-\infty} F(x)=0 \\ F(\infty) &=\lim _{x \rightarrow \infty} F(x)=1 \end{aligned} F()F()=xlimF(x)=0=xlimF(x)=1

  3. F ( x + 0 ) = F ( x ) , F(x+0)=F(x), F(x+0)=F(x), F ( x ) F(x) F(x) 是右连续的

§ 4 连续性随机变量及其概率密度

概率密度的定义: 如果对于随机变量 X 的分布函数 F ( x ) F(x) F(x),存在非负函数 f ( x ) , f(x), f(x), 使对于任意实数 x x x
F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infty}^{x} f(t) \mathrm{d} t F(x)=xf(t)dt
则称 X 为连续型随机变量,其中函数 f ( x ) f(x) f(x) 称为 X X X 的概率密度函数, 简称概率密度

概率密度的四大性质:

  1. f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0
  2. ∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infty}^{\infty} f(x) \mathrm{d} x=1 f(x)dx=1
  3. 对于任意实数 x 1 , x 2 ( x 1 ≤ x 2 ) x_{1}, x_{2}\left(x_{1} \leq x_{2}\right) x1,x2(x1x2), P { x 1 < X ⩽ x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ − ∞ x 2 f ( x ) d x P\left\{x_{1}<X \leqslant x_{2}\right\}=F\left(x_{2}\right)-F\left(x_{1}\right)=\int_{-\infty}^{x_{2}} f(x) \mathrm{d} x P{x1<Xx2}=F(x2)F(x1)=x2f(x)dx
  4. f ( x ) f(x) f(x) 在点 x x x 处连续,则有 F ′ ( x ) = f ( x ) F^{\prime}(x)=f(x) F(x)=f(x)

三种重要的连续型随机变量

(一) 均匀分布

均匀分布的定义: 若连续型随机变量 X 具有概率密度

f ( x ) = { 1 b − a , a < x < b 0 ,  其他  f(x)=\left\{\begin{array}{ll}\frac{1}{b-a}, & a<x<b \\ 0, & \text { 其他 }\end{array}\right. f(x)={ba1,0,a<x<b 其他 

则称 X 在区间 (a,b)上服从均匀分布.记为 X ∼ U ( a , b ) X \sim U(a, b) XU(a,b)

(二) 指数分布

指数分布的定义: 若连续型随机变量 X 的概率密度为
f ( x ) = { 1 θ e − x / θ , x > 0 0 ,  其他  f(x)=\left\{\begin{array}{ll} \frac{1}{\theta} \mathrm{e}^{-x / \theta}, & x>0 \\ 0, & \text { 其他 } \end{array}\right. f(x)={θ1ex/θ,0,x>0 其他 
其中 θ > 0 \theta>0 θ>0 为常数,则称 X 服从参数为 θ \theta θ 的指数分布

(三) 正态分布

若连续型随机变量 X 的概率密度为

f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < ∞ f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<\infty f(x)=2π σ1e2σ2(xμ)2,<x<

其中 μ , σ ( σ > 0 ) \mu, \sigma(\sigma>0) μ,σ(σ>0) 为常数,则称 X X X 服从参数为 μ , σ \mu, \sigma μ,σ 的正 态分布或 高斯 (Gauss) 分 布,记为 X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) XN(μ,σ2)

特别,当 μ = 0 , σ = 1 \mu=0, \sigma=1 μ=0,σ=1 时称随机变量 X X X 服从标准正态分布

正态分布的两个性质:

  1. 曲线关于 x = μ x=\mu x=μ 对称 . . . 这表明对于任意 h > 0 h>0 h>0
    P { μ − h < X ⩽ μ } = P { μ < X ⩽ μ + h } P\{\mu-h<X \leqslant \mu\}=P\{\mu<X \leqslant \mu+h\} P{μh<Xμ}=P{μ<Xμ+h}

  2. x = μ x=\mu x=μ 时取到敬大值

f ( μ ) = 1 2 π σ f(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} f(μ)=2π σ1

§ 5 随机变量的函数的分布

定理: 设随机变量 X 具.有概率密度 f x ( x ) , − ∞ < x < ∞ , f_{x}(x),-\infty<x<\infty, fx(x),<x<, 又设函数 g ( x ) g(x) g(x)处处可导且恒有 g ′ ( x ) > 0 g^{\prime}(x)>0 g(x)>0 (或桓有 g ′ ( x ) < 0 g^{\prime}(x)<0 g(x)<0 ),则 Y = g ( X ) Y=g(X) Y=g(X) 是连续型随机变量, 其概率密度为
f Y ( y ) = { f X [ h ( y ) ] ∣ h ′ ( y ) ∣ , α < y < β 0 ,  其他  f_{Y}(y)=\left\{\begin{array}{ll} f_{X}[h(y)]\left|h^{\prime}(y)\right|, & \alpha<y<\beta \\ 0, & \text { 其他 } \end{array}\right. fY(y)={fX[h(y)]h(y),0,α<y<β 其他 
其中 α = min ⁡ { g ( − ∞ ) , g ( ∞ ) } , β = max ⁡ { g ( − ∞ ) , g ( ∞ ) } , h ( y ) \alpha=\min \{g(-\infty), g(\infty)\}, \beta=\max \{g(-\infty), g(\infty)\}, h(y) α=min{g(),g()},β=max{g(),g()},h(y) g ( x ) g(x) g(x) 的反函数。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值