[BZOJ4008][HNOI2015]亚瑟王(概率DP)

如果能够求出每张卡牌在所有 r 轮中被发动的概率g[],那么答案显然为:
ni=1g[i]d[i]
第一步推出, g[1]=1(1p[1])r
再考虑第二张:
情况一:如果第 1 张牌没有发动过技能,那么第2张牌发动技能的概率为 1(1p[2])r
情况二:如果第 1 张牌发动过1次技能,那么在第 1 张牌发动技能的那一轮,第2张牌绝对不会再发动技能了,因此第 2 张牌发动技能的概率为1(1p[2])r1
结合这个例子,可以得到,对于任意的 i>1 ,在第 1 张牌到第i1张牌在所有 r 轮内是否发动技能已经确定的情况下,第i张牌被发动技能的概率只取决于第 1 张牌到第i1张牌中有多少张发动了技能。即如果有 j 张发动了技能,那么在此情况下第i张牌发动技能的概率为 1(1p[i])rj
根据这个性质,就能想到一个DP模型:
f[i][j] 表示前 i 张牌中,恰好有j张在所有 r 轮中被发动过的概率。
转移就比较好想了。分第i张牌发动与不发动两种情况:
1:发动。那么前 i1 张牌一定有 j1 张牌被发动技能,因此对于第 i 张牌,在r轮中有 j1 轮已经不会再发动技能了。所以:
f[i][j]+=(1(1p[i])rj+1)f[i1][j1]
2:不发动。那么前 i1 张牌中一定有 j 张牌被发动技能,因此对于第i张牌,在 r 轮中有j轮是绝对不会再发动技能的。所以:
f[i][j]+=(1p[i])rjf[i1][j]
因此,完整的转移方程为:
f[i][j]=((1(1p[i])rj+1)f[i1][j1])[j>0]
+((1p[i])rjf[i1][j])[ij]
那么求 g 就更容易了:
g[i]=min(i1,r)j=0(1(1p[i])rj)f[i1][j]
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 234, R = 143;
int n, r, d[N];
double p[N], f[N][R], g[N], pw[N][R];
void work() {
    memset(f, 0, sizeof(f)); memset(g, 0, sizeof(g));
    int i, j; scanf("%d%d", &n, &r);
    for (i = 1; i <= n; i++) scanf("%lf%d", &p[i], &d[i]), pw[i][0] = 1;
    if (!r) return (void) puts("0.0000000000");
    for (i = 1; i <= n; i++) for (j = 1; j <= r; j++)
        pw[i][j] = pw[i][j - 1] * (1.0 - p[i]);
    f[1][0] = pw[1][r]; f[1][1] = g[1] = 1.0 - pw[1][r];
    for (i = 2; i <= n; i++) for (j = 0; j <= min(i, r); j++) {
        if (j) f[i][j] += f[i - 1][j - 1] * (1.0 - pw[i][r - j + 1]);
        if (i != j) f[i][j] += f[i - 1][j] * pw[i][r - j];
    }
    for (i = 2; i <= n; i++) for (j = 0; j <= min(i - 1, r); j++)
        g[i] += f[i - 1][j] * (1.0 - pw[i][r - j]);
    double ans = 0;
    for (i = 1; i <= n; i++) ans += g[i] * d[i];
    printf("%.10lf\n", ans);
}
int main() {
    int T; cin >> T; while (T--) work();
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值