[LOJ#3119][CTS2019]随机立方体(容斥)

Address

Solution

  • 考虑容斥
  • 具体地,用「选出 k k k 个格子,这 k k k 个格子极大的概率之和」 × C k k \times C_k^k ×Ckk
  • 减去「选出 k + 1 k+1 k+1 个格子,这 k + 1 k+1 k+1 个格子极大的概率之和」 × C k + 1 k \times C_{k+1}^k ×Ck+1k
  • 再加上「选出 k + 2 k+2 k+2 个格子,这 k + 2 k+2 k+2 个格子极大的概率之和」 × C k + 2 k \times C_{k+2}^k ×Ck+2k
  • 以此类推直到 min ⁡ ( n , m , l ) \min(n,m,l) min(n,m,l)
  • 问题转化为对于所有的 i ∈ [ k , min ⁡ ( n , m , l ) ] i\in[k,\min(n,m,l)] i[k,min(n,m,l)] ,求选出 i i i 个格子,使得这 i i i 个格子极大的概率之和(换句话说,就是对于所有选出 i i i 个格子的方案,已经选出的 i i i 个格子为极大的概率之和)
  • 显然地,所有极大的格子都满足 x x x 互不相同, y y y 互不相同, z z z 互不相同
  • 同时,我们容易得到,这 i i i 个格子具体取在哪些位置,与这 i i i 个格子为极大的概率无关
  • 于是假设我们确定了这 i i i 个格子的位置以及大小顺序,定义第 1 1 1 2 2 2 3 3 3 …个格子为上面填的数第 1 1 1 2 2 2 3 3 3 …大的格子
  • 这样对于每个 x y z xyz xyz 坐标之一与这 i i i 个格子之一相等的格子,都存在一个限制,即这个格子上的数不超过选出的第 t t t 个格子上的数
  • 可以计算出,这样的格子总数为 n m l − ( n − i ) ( m − i ) ( l − i ) nml-(n-i)(m-i)(l-i) nml(ni)(mi)(li)
  • 由于我们已经确定了这 i i i 个格子的大小顺序,所以选出的第 1 1 1 个格子应该是这 n m l − ( n − i ) ( m − i ) ( l − i ) nml-(n-i)(m-i)(l-i) nml(ni)(mi)(li) 个中的最大者
  • 易得第 1 1 1 个格子为最大值的概率为
  • 1 n m l − ( n − i ) ( m − i ) ( l − i ) \frac1{nml-(n-i)(m-i)(l-i)} nml(ni)(mi)(li)1
  • 而如果这样,那么对于一个格子(不为第 1 1 1 个格子),如果它与第 1 1 1 个格子存在至少一个坐标相等,而与第 2 2 2 到第 i i i 个格子不存在任一坐标相等,则这个格子可以在之前的条件下任意取
  • 这样还剩下 n m l − ( n − ( i − 1 ) ) ( m − ( i − 1 ) ) ( l − ( i − 1 ) ) nml-(n-(i-1))(m-(i-1))(l-(i-1)) nml(n(i1))(m(i1))(l(i1)) 个格子需要处理
  • 显然,这时候第 2 2 2 个格子需要成为这些格子中填数最大的格子
  • 概率为
  • 1 n m l − ( n − ( i − 1 ) ) ( m − ( i − 1 ) ) ( l − ( i − 1 ) ) \frac1{nml-(n-(i-1))(m-(i-1))(l-(i-1))} nml(n(i1))(m(i1))(l(i1))1
  • 以此类推。这样我们得出了:在 i i i 个格子的相对大小及位置确定的情况下,这 i i i 个格子都为极大的概率为
  • ∏ j = 1 i 1 n m l − ( n − j ) ( m − j ) ( l − j ) \prod_{j=1}^i\frac1{nml-(n-j)(m-j)(l-j)} j=1inml(nj)(mj)(lj)1
  • 回到前面,由于我们需要确定这 i i i 个格子的相对大小及位置,故「选出 i i i 个格子,这 i i i 个格子极大的概率之和」等于
  • A n i A m i A l i ∏ j = 1 i 1 n m l − ( n − j ) ( m − j ) ( l − j ) A_n^i A_m^iA_l^i\prod_{j=1}^i\frac1{nml-(n-j)(m-j)(l-j)} AniAmiAlij=1inml(nj)(mj)(lj)1
  • 所以最终答案
  • ∑ i = k min ⁡ ( n , m , k ) ( − 1 ) i − k C i k A n i A m i A l i ∏ j = 1 i 1 n m l − ( n − j ) ( m − j ) ( l − j ) \sum_{i=k}^{\min(n,m,k)}(-1)^{i-k}C_i^kA_n^iA_m^iA_l^i\prod_{j=1}^i\frac1{nml-(n-j)(m-j)(l-j)} i=kmin(n,m,k)(1)ikCikAniAmiAlij=1inml(nj)(mj)(lj)1
  • 注意到如果逐个预处理 n m l − ( n − i ) ( m − i ) ( l − i ) nml-(n-i)(m-i)(l-i) nml(ni)(mi)(li) 的前缀积的逆元,那么你会得到 80 80 80 分的高分
  • 需要一个小 trick :我们预处理 n n n 个数的前缀积的逆元时,可以先求出所有 n n n 个数的积的逆元,那么可以得到
  • f ( i ) = f ( i + 1 ) a i + 1 f(i)=f(i+1)a_{i+1} f(i)=f(i+1)ai+1
  • f ( i ) f(i) f(i) 为前 i i i 个数积的逆元, a i a_i ai 为第 i i i 个数
  • 实现 O ( n ) O(n) O(n) 预处理逆元
  • 复杂度 O ( T min ⁡ ( n , m , l ) ) O(T\min(n,m,l)) O(Tmin(n,m,l))

Code

#include <bits/stdc++.h>

inline int read()
{
	int res = 0; bool bo = 0; char c;
	while (((c = getchar()) < '0' || c > '9') && c != '-');
	if (c == '-') bo = 1; else res = c - 48;
	while ((c = getchar()) >= '0' && c <= '9')
		res = (res << 3) + (res << 1) + (c - 48);
	return bo ? ~res + 1 : res;
}

template <class T>
inline T Min(const T &a, const T &b, const T &c)
{
	T x = a;
	if (b < x) x = b;
	if (c < x) x = c;
	return x;
}

const int N = 5e6 + 5, ZZQ = 998244353;

int n, m, l, k, a[N], fac[N], inv[N], inva[N];

int qpow(int a, int b)
{
	int res = 1;
	while (b)
	{
		if (b & 1) res = 1ll * res * a % ZZQ;
		a = 1ll * a * a % ZZQ;
		b >>= 1;
	}
	return res;
}

int A(int n, int m)
{
	return 1ll * fac[n] * inv[n - m] % ZZQ;
}

int C(int n, int m)
{
	return 1ll * fac[n] * inv[m] % ZZQ * inv[n - m] % ZZQ;
}

void work()
{
	int ans = 0, qr = 1;
	n = read(); m = read(); l = read(); k = read();
	for (int i = 1; i <= Min(n, m, l); i++)
		a[i] = (1ll * n * m % ZZQ * l % ZZQ - 1ll * (n - i) * (m - i)
			% ZZQ * (l - i) % ZZQ + ZZQ) % ZZQ,
				qr = 1ll * qr * a[i] % ZZQ;
	inva[Min(n, m, l)] = qpow(qr, ZZQ - 2);
	for (int i = Min(n, m, l) - 1; i >= 0; i--)
		inva[i] = 1ll * inva[i + 1] * a[i + 1] % ZZQ;
	for (int i = k; i <= Min(n, m, l); i++)
	{
		int delta = 1ll * A(n, i) * A(m, i) % ZZQ * A(l, i)
			% ZZQ * inva[i] % ZZQ * C(i, k) % ZZQ;
		if (i - k & 1) ans = (ans - delta + ZZQ) % ZZQ;
		else ans = (ans + delta) % ZZQ;
	}
	printf("%d\n", ans);
}

int main()
{
	fac[0] = inv[0] = inv[1] = 1;
	for (int i = 1; i <= 5000000; i++)
		fac[i] = 1ll * fac[i - 1] * i % ZZQ;
	for (int i = 2; i <= 5000000; i++)
		inv[i] = 1ll * (ZZQ - ZZQ / i) * inv[ZZQ % i] % ZZQ;
	for (int i = 2; i <= 5000000; i++)
		inv[i] = 1ll * inv[i] * inv[i - 1] % ZZQ;
	int T = read();
	while (T--) work();
	return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值