数据预处理之“分类”数据离散化

在机器学习中,由于大多数算法需要数值型数据,因此需要对分类数据进行离散化。本文以性别为例,介绍了将类别数据转换为二元特征的方法,通过LabelEncoder进行标签化,再用OneHotEncoder进行离散化,从而避免类别数据的大小比较问题。通过这种方法,可以将一个属性拆分成多个特征,每个特征表示为1或0,表示数据是否具有特定属性。
摘要由CSDN通过智能技术生成

大多数机器学习算法不能识别类别数据,要求数据必须是数值型的,故作为一名合格的MLer必须对相应转换方法有所了解。

以性别为例,性别特征具有两个选项:男或女,机器学习模型搞不懂何为“男 、女”,但清楚何为“1、0”。直观的做法,将“男、女”对“1、0”进行映射,即 sex

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值