一图看懂Policy Gradients深度强化学习算法


前言

基于Policy Gradients(策略梯度法,后文简称PG)的深度强化学习方法,思想上与基于Q-learning的系列算法有本质的不同,下面本博客争取用简洁的语言,清晰的图表对PG深度强化学习算法进行阐述,帮助初学者更好地理解算法。

一、PG深度强化学习算法的产生动机?

想要了解PG深度强化学习算法为什么会产生,需要知道在这之前诞生的Q-learning及其系列算法(如:DQN[参考这里],Double DQN等),Q系列算法在每一步做出行动(action)之后,都要计算收益(reward),而且一般需要计算两次,一次是估计收益,一次是现实收益,两者之间的差距(gap)被视为深度神经网络的loss值,从而用于更新神经网络的参数 θ \theta θ

而现实生活中,很多决策的行动空间是高维甚至连续(无限)的,比如自动驾驶中,汽车下一个决策中方向盘的行动空间,就是一个从[-900°,900°](假设方向盘是两圈半打满)的无限空间中选一个值,如果我们用Q系列算法来进行学习,则需要对每一个行动都计算一次reward,那么对无限行动空间而言,哪怕是把行动空间离散化,针对每个离散行动计算一次reward的计算成本也是当前算力所吃不消的。这是对Q系列算法提出的第一个挑战:无法遍历行动空间中所有行动的reward值。

此外,现实中的决策往往是带有多阶段属性的,说白了就是:“不到最后时刻不知输赢”。以即时策略游戏(如:星际争霸,或者国内流行的王者荣耀)为例,玩家的输赢只有在最后游戏结束时才能知晓,谁也没法在游戏进行过程中笃定哪一方一定能够赢。甚至有可能发生:某个玩家的每一步行动看起来都很傻,但是最后却能够赢得比赛,比如,Dota游戏中,有的玩家虽然死了很多次,己方的塔被拆了也不管,但是却靠着偷塔取胜(虽然这种行为可能是不受欢迎的)。诸如此类的情形就对Q系列算法提出了第二个挑战,Agent每执行一个动作(action)之后的奖励(reward)难以确定,这就导致Q值无法更新。

那么,难道深度强化学习就不能处理诸如上述两类情形的问题了吗?答案当然是否定的,这就衍生出了基于PG的系列深度强化学习算法[1]。下面我将就最原始,最简单的PG深度强化学习算法进行介绍,了解之后就可以进阶更高级的算法了。

二、算法原理

算法原理
上图所示的就是最简单的PG强化学习算法原理了,最关键的部分其实就是神经网络更新梯度: α ∇ θ log ⁡ π θ ( s t , a t ) v t \alpha {\nabla _\theta }\log {\pi _\theta }\left( { {s_t},{a_t}} \right){v_t} αθlogπθ(st,at

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值