pytorch小记(十八):PyTorch 中四大归一化方法终极解析:BatchNorm/LayerNorm/InstanceNorm/GroupNorm



四大归一化方法终极解析:BatchNorm/LayerNorm/InstanceNorm/GroupNorm

一、为什么要归一化?——从“身高体重”到神经网络

假设你正在训练一个模型,输入特征是身高(1.6m~1.9m)和体重(50kg~100kg)。这两个特征量级差异巨大,模型会疯狂关注体重的变化,而忽略身高的细微差异。归一化(Normalization) 就像把身高体重缩放到“-1到1”的区间,让模型公平对待每个特征。它的核心作用:

  1. 加速训练:避免梯度爆炸/消失
  2. 提升稳定性:降低对参数初始化的敏感度
  3. 增强泛化:缓解过拟合

二、四大归一化方法详解(公式+代码+场景)

1. BatchNorm(批归一化)——全班统考排名法

🌟 核心思想
  • 操作对象:每个通道(如RGB图像的红色通道)
  • 类比:全班50个学生(批量大小=50),统计每个科目的平均分和方差(如数学、语文),将个人分数转换为“相对全班的排名”。
📐 数学公式(以图像数据为例)

输入形状:[N, C, H, W] = [批量大小, 通道数, 高, 宽]
对每个通道c

  • 计算全班该科目的平均分
    μ c = 1 N × H × W ∑ n = 1 N ∑ h = 1 H ∑ w = 1 W x n , c , h , w \mu_c = \frac{1}{N \times H \times W} \sum_{n=1}^N \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} μc=N×H×W1n=1Nh=1Hw=1Wxn,c,h,w
  • 计算方差
    σ c 2 = 1 N × H × W ∑ n = 1 N ∑ h = 1 H ∑ w = 1 W ( x n , c , h , w − μ c ) 2 \sigma_c^2 = \frac{1}{N \times H \times W} \sum_{n=1}^N \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_c)^2 σc2=N×H×W1n=1Nh=1Hw=1W(xn,c,h,wμc)2
  • 归一化并调整
    y n , c , h , w = γ c ⋅ x n , c , h , w − μ c σ c 2 + ϵ + β c y_{n,c,h,w} = \gamma_c \cdot \frac{x_{n,c,h,w} - \mu_c}{\sqrt{\sigma_c^2 + \epsilon}} + \beta_c yn,c,h,w=γcσc2+ϵ xn,c,h,wμc+βc
    • γ c , β c \gamma_c, \beta_c γc,βc:可学习的缩放和偏移参数(每个通道独立)
    • ϵ \epsilon ϵ:防止除零的小常数(默认1e-5)
💻 代码示例
import torch.nn as nn

# 输入形状:[32, 64, 224, 224](32张图,64通道,分辨率224x224)
bn = nn.BatchNorm2d(num_features=64)  # 对64个通道分别处理
output = bn(input)  # 输出形状不变
🎯 适用场景
  • 图像分类(如ResNet)
  • 需要较大的批量(通常≥32),否则统计不准
❗ 常见问题

Q:如果批量大小=1(Batch Size=1),BatchNorm会怎样?
A:方差计算会出现除零错误!此时必须换用GroupNorm或InstanceNorm。


2. LayerNorm(层归一化)——个人全能评分法

🌟 核心思想
  • 操作对象:单个样本的所有通道
  • 类比:不关心班级排名,只关心每个学生所有科目的总分。将张三的语数英成绩统一转换,使各科成绩分布合理。
📐 数学公式

输入形状:[N, C, H, W]
对每个样本n

  • 计算该样本所有通道的均值
    μ n = 1 C × H × W ∑ c = 1 C ∑ h = 1 H ∑ w = 1 W x n , c , h , w \mu_n = \frac{1}{C \times H \times W} \sum_{c=1}^C \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} μn=C×H×W1c=1Ch=1Hw=1Wxn,c,h,w
  • 计算方差
    σ n 2 = 1 C × H × W ∑ c = 1 C ∑ h = 1 H ∑ w = 1 W ( x n , c , h , w − μ n ) 2 \sigma_n^2 = \frac{1}{C \times H \times W} \sum_{c=1}^C \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_n)^2 σn2=C×H×W1c=1Ch=1Hw=1W(xn,c,h,wμn)2
  • 归一化并调整
    y n , c , h , w = γ ⋅ x n , c , h , w − μ n σ n 2 + ϵ + β y_{n,c,h,w} = \gamma \cdot \frac{x_{n,c,h,w} - \mu_n}{\sqrt{\sigma_n^2 + \epsilon}} + \beta yn,c,h,w=γσn2+ϵ xn,c,h,wμn+β
    • γ , β \gamma, \beta γ,β:所有通道共享参数
💻 代码示例
# 输入形状:[32, 64, 224, 224]
ln = nn.LayerNorm([64, 224, 224])  # 对每个样本的所有64x224x224像素归一化
output = ln(input)
🎯 适用场景
  • 自然语言处理(如Transformer)
  • RNN/LSTM(处理变长序列时稳定)

3. InstanceNorm(实例归一化)——单科个人能力法

🌟 核心思想
  • 操作对象:单个样本的单个通道
  • 类比:张三的数学成绩只看他自己历次考试的表现,不与其他学生比较。
📐 数学公式

输入形状:[N, C, H, W]
对每个样本n和通道c

  • 计算该通道的均值
    μ n , c = 1 H × W ∑ h = 1 H ∑ w = 1 W x n , c , h , w \mu_{n,c} = \frac{1}{H \times W} \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} μn,c=H×W1h=1Hw=1Wxn,c,h,w
  • 计算方差
    σ n , c 2 = 1 H × W ∑ h = 1 H ∑ w = 1 W ( x n , c , h , w − μ n , c ) 2 \sigma_{n,c}^2 = \frac{1}{H \times W} \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_{n,c})^2 σn,c2=H×W1h=1Hw=1W(xn,c,h,wμn,c)2
  • 归一化并调整
    y n , c , h , w = γ ⋅ x n , c , h , w − μ n , c σ n , c 2 + ϵ + β y_{n,c,h,w} = \gamma \cdot \frac{x_{n,c,h,w} - \mu_{n,c}}{\sqrt{\sigma_{n,c}^2 + \epsilon}} + \beta yn,c,h,w=γσn,c2+ϵ xn,c,h,wμn,c+β
    • γ , β \gamma, \beta γ,β:所有通道共享参数(可选项)
💻 代码示例
# 输入形状:[32, 64, 224, 224]
in_norm = nn.InstanceNorm2d(num_features=64)  # 对每个样本的每个通道独立处理
output = in_norm(input)
🎯 适用场景
  • 风格迁移(如StyleGAN)
  • 图像生成(如让模型学习特定纹理)

4. GroupNorm(组归一化)——学科小组互助法(修正重点!)

🌟 核心思想
  • 操作对象:单个样本的通道分组(将学科分组,而非学生分组)
  • 类比:将张三的科目分成小组(如数学+物理为一组,语文+历史为另一组),组内计算成绩的均值和方差,不与其他学生比较
📐 数学公式

输入形状:[N, C, H, W]
步骤

  1. 将C个通道分成G组(每组含(C/G)个通道)
  2. 对每个样本n和组g
    • 计算组内所有通道的均值
      μ n , g = 1 ( C / G ) × H × W ∑ c ∈ g ∑ h = 1 H ∑ w = 1 W x n , c , h , w \mu_{n,g} = \frac{1}{(C/G) \times H \times W} \sum_{c \in g} \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} μn,g=(C/G)×H×W1cgh=1Hw=1Wxn,c,h,w
    • 计算方差
      σ n , g 2 = 1 ( C / G ) × H × W ∑ c ∈ g ∑ h = 1 H ∑ w = 1 W ( x n , c , h , w − μ n , g ) 2 \sigma_{n,g}^2 = \frac{1}{(C/G) \times H \times W} \sum_{c \in g} \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_{n,g})^2 σn,g2=(C/G)×H×W1cgh=1Hw=1W(xn,c,h,wμn,g)2
  3. 归一化并调整
    y n , c , h , w = γ g ⋅ x n , c , h , w − μ n , g σ n , g 2 + ϵ + β g y_{n,c,h,w} = \gamma_g \cdot \frac{x_{n,c,h,w} - \mu_{n,g}}{\sqrt{\sigma_{n,g}^2 + \epsilon}} + \beta_g yn,c,h,w=γgσn,g2+ϵ xn,c,h,wμn,g+βg
    • γ g , β g \gamma_g, \beta_g γg,βg:每组独立参数
💻 代码示例
# 输入形状:[32, 64, 224, 224]
gn = nn.GroupNorm(num_groups=16, num_channels=64)  # 将64个通道分成16组(每组4通道)
output = gn(input)
🎯 适用场景
  • 小批量训练(如目标检测中的Mask R-CNN)
  • 视频处理(每帧作为不同样本)

三、四大方法对比总结(修正版)

方法归一化范围依赖批量大小适用场景PyTorch类
BatchNorm整个批量内同一通道的所有样本强依赖(需大批量)图像分类(ResNet)nn.BatchNorm2d
LayerNorm单个样本的所有通道不依赖NLP(Transformer)nn.LayerNorm
InstanceNorm单个样本的单个通道不依赖风格迁移(StyleGAN)nn.InstanceNorm2d
GroupNorm单个样本的通道分组不依赖小批量训练(Mask R-CNN)nn.GroupNorm

四、终极选择指南(三步法)

  1. 判断任务类型

    • 图像分类 ➔ BatchNorm
    • NLP/语音 ➔ LayerNorm
    • 图像生成/风格迁移 ➔ InstanceNorm
    • 目标检测/小批量 ➔ GroupNorm
  2. 检查批量大小

    • 如果批量≥32:优先BatchNorm
    • 如果批量≤8:必须换用GroupNorm/LayerNorm
  3. 特殊需求

    • 想要通道间独立 ➔ InstanceNorm
    • 想平衡独立性与计算量 ➔ GroupNorm(如G=16)

五、代码实战:四大方法对比

import torch
import torch.nn as nn

# 生成模拟数据:2张图片,3个通道,4x4分辨率
x = torch.rand(2, 3, 4, 4)  # shape [2,3,4,4]

# BatchNorm:通道维度归一化
bn = nn.BatchNorm2d(3)
print("BatchNorm输出均值:", bn(x).mean(dim=[0,2,3]))  # 应接近0(每个通道)

# LayerNorm:样本维度归一化
ln = nn.LayerNorm([3,4,4])
print("LayerNorm输出均值:", ln(x).mean())  # 整个样本接近0

# InstanceNorm:样本+通道独立
in_norm = nn.InstanceNorm2d(3)
print("InstanceNorm输出均值:", in_norm(x).mean(dim=[2,3]))  # 每个样本每个通道接近0

# GroupNorm:分组处理(3通道分1组=LayerNorm,分3组=InstanceNorm)
gn = nn.GroupNorm(num_groups=1, num_channels=3)  # 等效LayerNorm
print("GroupNorm输出均值:", gn(x).mean()) 

六、常见问题解答

Q1:训练和测试时归一化有何不同?
A:BatchNorm在训练时用当前批量统计量,测试时用全局移动平均;其他方法在训练/测试时行为一致。

Q2:如何选择GroupNorm的分组数?
A:常用16组或32组,通道数需能被分组数整除(如ResNet常用32组)。

Q3:归一化层为什么要有γ和β参数?
A:保持模型表达能力,允许数据恢复原始分布(比如γ=方差,β=均值时能还原原数据)。


七、总结

归一化方法没有绝对的好坏,只有适合的场景。理解其核心思想后,可以像搭积木一样灵活选择:

  • BatchNorm:适合“大批量+同分布”任务
  • LayerNorm:适合“变长序列+跨通道关联”任务
  • InstanceNorm:适合“风格化+通道独立”任务
  • GroupNorm:万能备胎,小批量首选



本例子中对输入张量维度 NCHW 通俗解释:“班级成绩表”

一、从“班级成绩表”理解NCHW

核心比喻

  • 班级:一个深度学习任务中的一批数据
  • 学生(N):每个样本(如图片、文本)
  • 科目(C):数据的通道(如图像的RGB通道、文本的嵌入维度)
  • 考试次数(H):空间高度(如像素行数)
  • 题目(W):空间宽度(如像素列数)

1. N(Batch Size)—— 批量大小

  • 通俗解释同时处理的学生数量
  • 示例
    • 假设你一次处理 32张图片,则 N=32
    • 若用“班级”比喻,N=50 表示同时处理50个学生的成绩
  • 关键作用
    • 批量越大,模型训练越稳定(但显存消耗越大)
    • 批量=1时无法使用BatchNorm

2. C(Channels)—— 通道数

  • 通俗解释每个学生的不同科目成绩
  • 示例
    • 图像数据:RGB图像的 C=3(红、绿、蓝三个通道)
    • 文本数据:词向量的 C=512(每个词用512维向量表示)
    • 比喻:每个学生有3科成绩(数学、语文、英语),则 C=3
  • 关键作用
    • 通道代表数据的不同特征维度
    • BatchNorm在通道维度做归一化

3. H(Height)—— 高度

  • 通俗解释每个科目的多次考试成绩(纵向维度)
  • 示例
    • 图像数据:图片高度为224像素 → H=224
    • 时间序列:100天内的温度记录 → H=100
    • 比喻:学生数学科目有5次月考成绩 → H=5
  • 关键作用
    • 与W共同构成空间维度(如图像的行和列)
    • 在卷积操作中会被逐步压缩(如池化层)

4. W(Width)—— 宽度

  • 通俗解释每次考试中的不同题目(横向维度)
  • 示例
    • 图像数据:图片宽度为224像素 → W=224
    • 时间序列:每天24小时温度记录 → W=24
    • 比喻:每次数学月考有10道题 → W=10
  • 关键作用
    • 与H共同描述数据的空间结构
    • 在NLP任务中可能对应序列长度(如句子中的单词数)

二、用“班级成绩表”彻底理解NCHW

假设场景

  • 班级:批量大小 N=50(50个学生)
  • 科目:通道数 C=3(数学、语文、英语)
  • 考试次数:高度 H=5(5次月考)
  • 题目数量:宽度 W=10(每次月考10道题)

成绩表结构

学生(N)科目(C)考试次数(H)题目(W)得分值
张三数学第1次月考第1题90
张三数学第1次月考第2题85
李四英语第5次月考第10题78

对应张量形状

  • 整体形状[N=50, C=3, H=5, W=10]
  • 物理意义
    • 每个学生的成绩是一个 [3,5,10] 的三维数组
    • 全班成绩是一个 [50,3,5,10] 的四维张量
回答:PyTorch中,softmax(dim)函数是用来进行多分类的。它将输入张量进行缩放,使得输出张量的元素位于\[0,1\]范围内,并且所有元素的和为1。参数dim表示在哪个维度上进行计算,即沿着该维度的每个切片的元素和为1。\[1\] 举个例子,假设有一个维度为(2,3,4)的张量a,当dim=0时,表示在维度0上的元素相加等于1;当dim=1时,表示在维度1上的元素相加等于1;当dim=2时,表示在维度2上的元素相加等于1。可以通过torch.nn.Softmax(dim)来实现这些操作。\[1\] softmax函数的作用是将多分类的结果以概率的形式展现出来。它对模型的分类预测结果进行非负性和归一化处理,最终得到0-1之间的分类概率。softmax函数是sigmoid函数在多分类上的推广。\[3\] 总结来说,softmax(dim)函数在PyTorch中用于进行多分类,通过对输入张量进行缩放,将其转化为概率分布。参数dim表示在哪个维度上进行计算,即沿着该维度的每个切片的元素和为1。\[1\]\[3\] #### 引用[.reference_title] - *1* [Pytorch小记-torch.nn.Softmax(dim=1)如何理解?](https://blog.csdn.net/zouxiaolv/article/details/125077637)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [torch.nn.Softmax(dim=0,1,2)](https://blog.csdn.net/weixin_49883619/article/details/121880326)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值