pytorch小记(十八):PyTorch 中四大归一化方法终极解析:BatchNorm/LayerNorm/InstanceNorm/GroupNorm
四大归一化方法终极解析:BatchNorm/LayerNorm/InstanceNorm/GroupNorm
一、为什么要归一化?——从“身高体重”到神经网络
假设你正在训练一个模型,输入特征是身高(1.6m~1.9m)和体重(50kg~100kg)。这两个特征量级差异巨大,模型会疯狂关注体重的变化,而忽略身高的细微差异。归一化(Normalization) 就像把身高体重缩放到“-1到1”的区间,让模型公平对待每个特征。它的核心作用:
- 加速训练:避免梯度爆炸/消失
- 提升稳定性:降低对参数初始化的敏感度
- 增强泛化:缓解过拟合
二、四大归一化方法详解(公式+代码+场景)
1. BatchNorm(批归一化)——全班统考排名法
🌟 核心思想
- 操作对象:每个通道(如RGB图像的红色通道)
- 类比:全班50个学生(批量大小=50),统计每个科目的平均分和方差(如数学、语文),将个人分数转换为“相对全班的排名”。
📐 数学公式(以图像数据为例)
输入形状:[N, C, H, W] = [批量大小, 通道数, 高, 宽]
对每个通道c:
- 计算全班该科目的平均分:
μ c = 1 N × H × W ∑ n = 1 N ∑ h = 1 H ∑ w = 1 W x n , c , h , w \mu_c = \frac{1}{N \times H \times W} \sum_{n=1}^N \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} μc=N×H×W1n=1∑Nh=1∑Hw=1∑Wxn,c,h,w - 计算方差:
σ c 2 = 1 N × H × W ∑ n = 1 N ∑ h = 1 H ∑ w = 1 W ( x n , c , h , w − μ c ) 2 \sigma_c^2 = \frac{1}{N \times H \times W} \sum_{n=1}^N \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_c)^2 σc2=N×H×W1n=1∑Nh=1∑Hw=1∑W(xn,c,h,w−μc)2 - 归一化并调整:
y n , c , h , w = γ c ⋅ x n , c , h , w − μ c σ c 2 + ϵ + β c y_{n,c,h,w} = \gamma_c \cdot \frac{x_{n,c,h,w} - \mu_c}{\sqrt{\sigma_c^2 + \epsilon}} + \beta_c yn,c,h,w=γc⋅σc2+ϵxn,c,h,w−μc+βc- γ c , β c \gamma_c, \beta_c γc,βc:可学习的缩放和偏移参数(每个通道独立)
- ϵ \epsilon ϵ:防止除零的小常数(默认1e-5)
💻 代码示例
import torch.nn as nn
# 输入形状:[32, 64, 224, 224](32张图,64通道,分辨率224x224)
bn = nn.BatchNorm2d(num_features=64) # 对64个通道分别处理
output = bn(input) # 输出形状不变
🎯 适用场景
- 图像分类(如ResNet)
- 需要较大的批量(通常≥32),否则统计不准
❗ 常见问题
Q:如果批量大小=1(Batch Size=1),BatchNorm会怎样?
A:方差计算会出现除零错误!此时必须换用GroupNorm或InstanceNorm。
2. LayerNorm(层归一化)——个人全能评分法
🌟 核心思想
- 操作对象:单个样本的所有通道
- 类比:不关心班级排名,只关心每个学生所有科目的总分。将张三的语数英成绩统一转换,使各科成绩分布合理。
📐 数学公式
输入形状:[N, C, H, W]
对每个样本n:
- 计算该样本所有通道的均值:
μ n = 1 C × H × W ∑ c = 1 C ∑ h = 1 H ∑ w = 1 W x n , c , h , w \mu_n = \frac{1}{C \times H \times W} \sum_{c=1}^C \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} μn=C×H×W1c=1∑Ch=1∑Hw=1∑Wxn,c,h,w - 计算方差:
σ n 2 = 1 C × H × W ∑ c = 1 C ∑ h = 1 H ∑ w = 1 W ( x n , c , h , w − μ n ) 2 \sigma_n^2 = \frac{1}{C \times H \times W} \sum_{c=1}^C \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_n)^2 σn2=C×H×W1c=1∑Ch=1∑Hw=1∑W(xn,c,h,w−μn)2 - 归一化并调整:
y n , c , h , w = γ ⋅ x n , c , h , w − μ n σ n 2 + ϵ + β y_{n,c,h,w} = \gamma \cdot \frac{x_{n,c,h,w} - \mu_n}{\sqrt{\sigma_n^2 + \epsilon}} + \beta yn,c,h,w=γ⋅σn2+ϵxn,c,h,w−μn+β- γ , β \gamma, \beta γ,β:所有通道共享参数
💻 代码示例
# 输入形状:[32, 64, 224, 224]
ln = nn.LayerNorm([64, 224, 224]) # 对每个样本的所有64x224x224像素归一化
output = ln(input)
🎯 适用场景
- 自然语言处理(如Transformer)
- RNN/LSTM(处理变长序列时稳定)
3. InstanceNorm(实例归一化)——单科个人能力法
🌟 核心思想
- 操作对象:单个样本的单个通道
- 类比:张三的数学成绩只看他自己历次考试的表现,不与其他学生比较。
📐 数学公式
输入形状:[N, C, H, W]
对每个样本n和通道c:
- 计算该通道的均值:
μ n , c = 1 H × W ∑ h = 1 H ∑ w = 1 W x n , c , h , w \mu_{n,c} = \frac{1}{H \times W} \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} μn,c=H×W1h=1∑Hw=1∑Wxn,c,h,w - 计算方差:
σ n , c 2 = 1 H × W ∑ h = 1 H ∑ w = 1 W ( x n , c , h , w − μ n , c ) 2 \sigma_{n,c}^2 = \frac{1}{H \times W} \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_{n,c})^2 σn,c2=H×W1h=1∑Hw=1∑W(xn,c,h,w−μn,c)2 - 归一化并调整:
y n , c , h , w = γ ⋅ x n , c , h , w − μ n , c σ n , c 2 + ϵ + β y_{n,c,h,w} = \gamma \cdot \frac{x_{n,c,h,w} - \mu_{n,c}}{\sqrt{\sigma_{n,c}^2 + \epsilon}} + \beta yn,c,h,w=γ⋅σn,c2+ϵxn,c,h,w−μn,c+β- γ , β \gamma, \beta γ,β:所有通道共享参数(可选项)
💻 代码示例
# 输入形状:[32, 64, 224, 224]
in_norm = nn.InstanceNorm2d(num_features=64) # 对每个样本的每个通道独立处理
output = in_norm(input)
🎯 适用场景
- 风格迁移(如StyleGAN)
- 图像生成(如让模型学习特定纹理)
4. GroupNorm(组归一化)——学科小组互助法(修正重点!)
🌟 核心思想
- 操作对象:单个样本的通道分组(将学科分组,而非学生分组)
- 类比:将张三的科目分成小组(如数学+物理为一组,语文+历史为另一组),组内计算成绩的均值和方差,不与其他学生比较。
📐 数学公式
输入形状:[N, C, H, W]
步骤:
- 将C个通道分成G组(每组含(C/G)个通道)
- 对每个样本n和组g:
- 计算组内所有通道的均值:
μ n , g = 1 ( C / G ) × H × W ∑ c ∈ g ∑ h = 1 H ∑ w = 1 W x n , c , h , w \mu_{n,g} = \frac{1}{(C/G) \times H \times W} \sum_{c \in g} \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} μn,g=(C/G)×H×W1c∈g∑h=1∑Hw=1∑Wxn,c,h,w - 计算方差:
σ n , g 2 = 1 ( C / G ) × H × W ∑ c ∈ g ∑ h = 1 H ∑ w = 1 W ( x n , c , h , w − μ n , g ) 2 \sigma_{n,g}^2 = \frac{1}{(C/G) \times H \times W} \sum_{c \in g} \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_{n,g})^2 σn,g2=(C/G)×H×W1c∈g∑h=1∑Hw=1∑W(xn,c,h,w−μn,g)2
- 计算组内所有通道的均值:
- 归一化并调整:
y n , c , h , w = γ g ⋅ x n , c , h , w − μ n , g σ n , g 2 + ϵ + β g y_{n,c,h,w} = \gamma_g \cdot \frac{x_{n,c,h,w} - \mu_{n,g}}{\sqrt{\sigma_{n,g}^2 + \epsilon}} + \beta_g yn,c,h,w=γg⋅σn,g2+ϵxn,c,h,w−μn,g+βg- γ g , β g \gamma_g, \beta_g γg,βg:每组独立参数
💻 代码示例
# 输入形状:[32, 64, 224, 224]
gn = nn.GroupNorm(num_groups=16, num_channels=64) # 将64个通道分成16组(每组4通道)
output = gn(input)
🎯 适用场景
- 小批量训练(如目标检测中的Mask R-CNN)
- 视频处理(每帧作为不同样本)
三、四大方法对比总结(修正版)
方法 | 归一化范围 | 依赖批量大小 | 适用场景 | PyTorch类 |
---|---|---|---|---|
BatchNorm | 整个批量内同一通道的所有样本 | 强依赖(需大批量) | 图像分类(ResNet) | nn.BatchNorm2d |
LayerNorm | 单个样本的所有通道 | 不依赖 | NLP(Transformer) | nn.LayerNorm |
InstanceNorm | 单个样本的单个通道 | 不依赖 | 风格迁移(StyleGAN) | nn.InstanceNorm2d |
GroupNorm | 单个样本的通道分组 | 不依赖 | 小批量训练(Mask R-CNN) | nn.GroupNorm |
四、终极选择指南(三步法)
-
判断任务类型:
- 图像分类 ➔ BatchNorm
- NLP/语音 ➔ LayerNorm
- 图像生成/风格迁移 ➔ InstanceNorm
- 目标检测/小批量 ➔ GroupNorm
-
检查批量大小:
- 如果批量≥32:优先BatchNorm
- 如果批量≤8:必须换用GroupNorm/LayerNorm
-
特殊需求:
- 想要通道间独立 ➔ InstanceNorm
- 想平衡独立性与计算量 ➔ GroupNorm(如G=16)
五、代码实战:四大方法对比
import torch
import torch.nn as nn
# 生成模拟数据:2张图片,3个通道,4x4分辨率
x = torch.rand(2, 3, 4, 4) # shape [2,3,4,4]
# BatchNorm:通道维度归一化
bn = nn.BatchNorm2d(3)
print("BatchNorm输出均值:", bn(x).mean(dim=[0,2,3])) # 应接近0(每个通道)
# LayerNorm:样本维度归一化
ln = nn.LayerNorm([3,4,4])
print("LayerNorm输出均值:", ln(x).mean()) # 整个样本接近0
# InstanceNorm:样本+通道独立
in_norm = nn.InstanceNorm2d(3)
print("InstanceNorm输出均值:", in_norm(x).mean(dim=[2,3])) # 每个样本每个通道接近0
# GroupNorm:分组处理(3通道分1组=LayerNorm,分3组=InstanceNorm)
gn = nn.GroupNorm(num_groups=1, num_channels=3) # 等效LayerNorm
print("GroupNorm输出均值:", gn(x).mean())
六、常见问题解答
Q1:训练和测试时归一化有何不同?
A:BatchNorm在训练时用当前批量统计量,测试时用全局移动平均;其他方法在训练/测试时行为一致。
Q2:如何选择GroupNorm的分组数?
A:常用16组或32组,通道数需能被分组数整除(如ResNet常用32组)。
Q3:归一化层为什么要有γ和β参数?
A:保持模型表达能力,允许数据恢复原始分布(比如γ=方差,β=均值时能还原原数据)。
七、总结
归一化方法没有绝对的好坏,只有适合的场景。理解其核心思想后,可以像搭积木一样灵活选择:
- BatchNorm:适合“大批量+同分布”任务
- LayerNorm:适合“变长序列+跨通道关联”任务
- InstanceNorm:适合“风格化+通道独立”任务
- GroupNorm:万能备胎,小批量首选
本例子中对输入张量维度 NCHW 通俗解释:“班级成绩表”
一、从“班级成绩表”理解NCHW
核心比喻
- 班级:一个深度学习任务中的一批数据
- 学生(N):每个样本(如图片、文本)
- 科目(C):数据的通道(如图像的RGB通道、文本的嵌入维度)
- 考试次数(H):空间高度(如像素行数)
- 题目(W):空间宽度(如像素列数)
1. N(Batch Size)—— 批量大小
- 通俗解释:同时处理的学生数量
- 示例:
- 假设你一次处理 32张图片,则
N=32
- 若用“班级”比喻,N=50 表示同时处理50个学生的成绩
- 假设你一次处理 32张图片,则
- 关键作用:
- 批量越大,模型训练越稳定(但显存消耗越大)
- 批量=1时无法使用BatchNorm
2. C(Channels)—— 通道数
- 通俗解释:每个学生的不同科目成绩
- 示例:
- 图像数据:RGB图像的
C=3
(红、绿、蓝三个通道) - 文本数据:词向量的
C=512
(每个词用512维向量表示) - 比喻:每个学生有3科成绩(数学、语文、英语),则
C=3
- 图像数据:RGB图像的
- 关键作用:
- 通道代表数据的不同特征维度
- BatchNorm在通道维度做归一化
3. H(Height)—— 高度
- 通俗解释:每个科目的多次考试成绩(纵向维度)
- 示例:
- 图像数据:图片高度为224像素 →
H=224
- 时间序列:100天内的温度记录 →
H=100
- 比喻:学生数学科目有5次月考成绩 →
H=5
- 图像数据:图片高度为224像素 →
- 关键作用:
- 与W共同构成空间维度(如图像的行和列)
- 在卷积操作中会被逐步压缩(如池化层)
4. W(Width)—— 宽度
- 通俗解释:每次考试中的不同题目(横向维度)
- 示例:
- 图像数据:图片宽度为224像素 →
W=224
- 时间序列:每天24小时温度记录 →
W=24
- 比喻:每次数学月考有10道题 →
W=10
- 图像数据:图片宽度为224像素 →
- 关键作用:
- 与H共同描述数据的空间结构
- 在NLP任务中可能对应序列长度(如句子中的单词数)
二、用“班级成绩表”彻底理解NCHW
假设场景
- 班级:批量大小
N=50
(50个学生) - 科目:通道数
C=3
(数学、语文、英语) - 考试次数:高度
H=5
(5次月考) - 题目数量:宽度
W=10
(每次月考10道题)
成绩表结构
学生(N) | 科目(C) | 考试次数(H) | 题目(W) | 得分值 |
---|---|---|---|---|
张三 | 数学 | 第1次月考 | 第1题 | 90 |
张三 | 数学 | 第1次月考 | 第2题 | 85 |
… | … | … | … | … |
李四 | 英语 | 第5次月考 | 第10题 | 78 |
对应张量形状
- 整体形状:
[N=50, C=3, H=5, W=10]
- 物理意义:
- 每个学生的成绩是一个
[3,5,10]
的三维数组 - 全班成绩是一个
[50,3,5,10]
的四维张量
- 每个学生的成绩是一个