7 - 空间解析几何

7 - 空间解析几何


文章目录


一、基本概念的描述与运算

(一)点乘 与 叉乘

1)点乘(数量积 / 内积)

点乘结果为 标量

1. 点乘的运算方法

a ⃗ ⋅ b ⃗ = ( x a , y a , z a ) ⋅ ( x b , y b , z b ) = x a x b + y a y b + z a z b \vec a\cdot\vec b=(x_a,y_a,z_a)\cdot(x_b,y_b,z_b)=x_ax_b+y_ay_b+z_az_b a b =(xa,ya,za)(xb,yb,zb)=xaxb+yayb+zazb

a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ c o s θ c o s θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \vec a\cdot\vec b=|\vec a||\vec b|cos\theta \\ cos\theta=\frac{\vec a\cdot\vec b}{|\vec a||\vec b|} a b =a ∣∣b cosθcosθ=a ∣∣b a b

2. 点乘的性质

点乘满足 交换律分配律不满足结合律 (两个向量点乘会得到一个标量,再点乘一个向量会得到矢量)

3. 点乘的几何意义

a ⃗ ⋅ b ⃗ = 0 ⟺ a ⃗ ⊥ b ⃗ \vec a \cdot \vec b=0 \Longleftrightarrow \vec a \bot\vec b a b =0a b

2)叉乘(叉积 / 外积)

叉乘结果是个 矢量

1. 叉乘的运算方法

a ⃗ × b ⃗ = ∣ x ^ y ^ z ^ x a y a z a x b y b z b ∣ ∣ a ⃗ × b ⃗ ∣ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ s i n θ \begin{aligned} \vec a \times \vec b&= \begin{vmatrix} \hat x & \hat y & \hat z \\ x_a & y_a & z_a \\ x_b & y_b & z_b \\ \end{vmatrix} \\ |\vec a\times\vec b|&=|\vec a||\vec b|sin\theta \end{aligned} a ×b a ×b = x^xaxby^yaybz^zazb =a ∣∣b sinθ

2.叉乘的性质

叉乘只满足对 点乘 和 叉乘分配率不满足结合律

叉乘的交换律 a ⃗ × b ⃗ = − b ⃗ × a ⃗ \vec a \times \vec b=-\vec b \times \vec a a ×b =b ×a

3. 叉乘的几何意义

a ⃗ × b ⃗ \vec a\times\vec b a ×b 表示由向量 a ⃗ 、 b ⃗ \vec a、\vec b a b 所构成的平行四边形的 面积 ,方向满足 右手定则

3)混合积

混合积的结果是个 标量

1. 混合积的运算方法

[ a ⃗ b ⃗ c ⃗ ] = ( a ⃗ × b ⃗ ) ⋅ c ⃗ = ∣ x a y a z a x b y b z b x c y c z c ∣ [\vec a\vec b\vec c]=(\vec a\times \vec b)\cdot \vec c= \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \\ \end{vmatrix} [a b c ]=(a ×b )c = xaxbxcyaybyczazbzc

2. 混合积的性质

a ⃗ ⋅ ( b ⃗ × c ⃗ ) = b ⃗ ⋅ ( c ⃗ × a ⃗ ) = c ⃗ ⋅ ( a ⃗ × b ⃗ ) \vec a\cdot(\vec b \times \vec c)=\vec b\cdot(\vec c \times \vec a)=\vec c\cdot(\vec a \times \vec b) a (b ×c )=b (c ×a )=c (a ×b )

【注】 :注意有 b ⃗ × c ⃗ = − c ⃗ × b ⃗ \vec b \times \vec c=-\vec c \times \vec b b ×c =c ×b ;可以认为叉乘处 a b c abc abc 是个循环队列: b × c → c × a → a × b b\times c \rightarrow c\times a\rightarrow a\times b b×cc×aa×b

3. 混合积的几何意义

混合积表示由向量 a ⃗ 、 b ⃗ 、 c ⃗ \vec a、\vec b、\vec c a b c 构成的平行六面体的体积
∣ x a y a z a x b y b z b x c y c z c ∣ = 0 ⟺ 三向量共面 \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \\ \end{vmatrix} =0 \Longleftrightarrow 三向量共面 xaxbxcyaybyczazbzc =0三向量共面


(二)空间中的线与面

【注】 :以下 τ \tau τ 表示切线 / 切向(tangent); n n n 表示法线 / 法向(normal)

曲线求 偏导,得到的是 切线与法平面
曲面求 偏导,得到的是 法线与切平面

描述空间中的 线 ,需要 两个方程(消除两个自由度)
描述空间中的 ,只要 一个方程(消除一个自由度)

1)空间中的线
1. 直线的方程

直线的 方向向量 τ ⃗ = ( l , m , n ) \vec\tau = (l,m,n) τ =(l,m,n)

  • 一般式 / 交面式:
    { A 1 x + B 1 y + C 1 z + D 1 = 0 ,   n 1 ⃗ = ( A 1 , B 1 , C 1 ) A 2 x + B 2 y + C 2 z + D 2 = 0 ,   n 2 ⃗ = ( A 2 , B 2 , C 2 ) \begin{cases} A_1x+B_1y+C_1z+D_1=0,\ \vec{n_1}=(A_1,B_1,C_1) \\ A_2x+B_2y+C_2z+D_2=0,\ \vec{n_2}=(A_2,B_2,C_2) \end{cases} {A1x+B1y+C1z+D1=0, n1 =(A1,B1,C1)A2x+B2y+C2z+D2=0, n2 =(A2,B2,C2)

一般式是由两个平面方程联立(两平面相交)确定 / 描述 一条空间中的直线的;其中 n 1 n_1 n1
n 2 n_2 n2 不平行
τ ⃗ = n 1 ⃗ × n 2 ⃗ \vec \tau = \vec{n_1}\times \vec{n_2} τ =n1 ×n2
可以令 x = x ,将一般式转化成 以 x 为参数的参数方程

  • 点向式 / 标准式 / 对称式:

x − x 0 l = y − y 0 m = z − z 0 n \frac{x-x_0}l=\frac{y-y_0}m=\frac {z-z_0}n lxx0=myy0=nzz0

直线过点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) ,方向为 τ ⃗ \vec\tau τ

可以将这个 连等式 拆分成 两个等式联立 的形式

  • 参数式:
    { x = x 0 + l t y = y 0 + m t z = z 0 + n t \begin{cases} x=x_0+lt \\ y=y_0+mt \\ z=z_0+nt \end{cases} x=x0+lty=y0+mtz=z0+nt

直线过点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) ,方向为 τ ⃗ = ( l , m , n ) \vec\tau =(l,m,n) τ =(l,m,n)

  • 两点式:
    x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 = z − z 1 z 2 − z 1 \frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1} x2x1xx1=y2y1yy1=z2z1zz1

直线过不同的两点 P 1 ( x 1 , y 1 , z 1 ) P_1(x_1,y_1,z_1) P1(x1,y1,z1) 和点 P 2 ( x 2 , y 2 , z 2 ) P_2(x_2,y_2,z_2) P2(x2,y2,z2)

x 2 − x 1 x_2-x_1 x2x1 事实上就是指 x 方向上的 斜率 x − x 1 x-x_1 xx1 表示过 x 1 x_1 x1

2. 曲线的方程
  • 一般式 / 交面式:

{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x,y,z)=0 \\ G(x,y,z)=0 \end{cases} {F(x,y,z)=0G(x,y,z)=0

实际上是两个曲面的交线(两个曲面方程联立)

  • 参数方程:
    { x = φ ( t ) y = ψ ( t ) z = ω ( t ) \begin{cases} x=\varphi(t) \\ y=\psi(t) \\ z=\omega(t) \\ \end{cases} x=φ(t)y=ψ(t)z=ω(t)
3. 曲线的 切线 与 法平面
① 参数方程 描述时 (在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 处)
  • 切向量:
    τ ⃗ = (   φ ′ ( t 0 ) ,   ψ ′ ( t 0 ) ,   ω ′ ( t 0 )   ) \vec\tau =(\ \varphi^\prime(t_0),\ \psi^\prime(t_0),\ \omega^\prime(t_0)\ ) τ =( φ(t0), ψ(t0), ω(t0) )

  • 切 线:
    x − x 0 φ ′ ( t 0 ) = y − y 0 ψ ′ ( t 0 ) = z − z 0 ω ′ ( t 0 ) \frac{x-x_0}{\varphi^\prime(t_0)}=\frac{y-y_0}{\psi^\prime(t_0)}=\frac{z-z_0}{\omega^\prime(t_0)} φ(t0)xx0=ψ(t0)yy0=ω(t0)zz0

  • 法平面:
    φ ′ ( t 0 ) ( x − x 0 ) + ψ ′ ( t 0 ) ( y − y 0 ) + ω ′ ( t 0 ) ( z − z 0 ) = 0 \varphi^\prime(t_0)(x-x_0)+\psi^\prime(t_0)(y-y_0)+\omega^\prime(t_0)(z-z_0)=0 φ(t0)(xx0)+ψ(t0)(yy0)+ω(t0)(zz0)=0

② 一般式 / 交面式 描述时 (在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 处)
  • 切向量:
    τ ⃗ = ( ∣ F y ′ F z ′ G y ′ G z ′ ∣ , ∣ F z ′ F x ′ G z ′ G x ′ ∣ , ∣ F x ′ F y ′ G x ′ G y ′ ∣ ) \vec\tau=( \begin{vmatrix} F^\prime_y & F^\prime_z \\ G^\prime_y & G^\prime_z \\ \end{vmatrix}, \begin{vmatrix} F^\prime_z & F^\prime_x \\ G^\prime_z & G^\prime_x \\ \end{vmatrix}, \begin{vmatrix} F^\prime_x & F^\prime_y \\ G^\prime_x & G^\prime_y \\ \end{vmatrix} ) τ =( FyGyFzGz , FzGzFxGx , FxGxFyGy )

  • 切 线:

x − x 0 ∣ F y ′ F z ′ G y ′ G z ′ ∣ P 0 = y − y 0 ∣ F z ′ F x ′ G z ′ G x ′ ∣ P 0 = z − z 0 ∣ F x ′ F y ′ G x ′ G y ′ ∣ P 0 \frac{x-x_0}{\begin{vmatrix} F^\prime_y & F^\prime_z \\ G^\prime_y & G^\prime_z \\ \end{vmatrix}_{P_0}}=\frac{y-y_0}{\begin{vmatrix} F^\prime_z & F^\prime_x \\ G^\prime_z & G^\prime_x \\ \end{vmatrix}_{P_0}}=\frac{z-z_0}{\begin{vmatrix} F^\prime_x & F^\prime_y \\ G^\prime_x & G^\prime_y \\ \end{vmatrix}_{P_0}} FyGyFzGz P0xx0= FzGzFxGx P0yy0= FxGxFyGy P0zz0

  • 法平面:
    ∣ F y ′ F z ′ G y ′ G z ′ ∣ P 0 ( x − x 0 ) + ∣ F z ′ F y ′ G z ′ G y ′ ∣ P 0 ( y − y 0 ) + ∣ F x ′ F y ′ G x ′ G y ′ ∣ P 0 ( z − z 0 ) = 0 {\begin{vmatrix} F^\prime_y & F^\prime_z \\ G^\prime_y & G^\prime_z \\ \end{vmatrix}_{P_0}}(x-x_0)+{\begin{vmatrix} F^\prime_z & F^\prime_y \\ G^\prime_z & G^\prime_y \\ \end{vmatrix}_{P_0}}(y-y_0)+{\begin{vmatrix} F^\prime_x & F^\prime_y \\ G^\prime_x & G^\prime_y \\ \end{vmatrix}_{P_0}}(z-z_0)=0 FyGyFzGz P0(xx0)+ FzGzFyGy P0(yy0)+ FxGxFyGy P0(zz0)=0

这里的核心是 两个曲面的法向量叉乘 的结果即为 曲线的切向量,即
τ ⃗ = ∣ x ^ y ^ z ^ F x ′ F y ′ F z ′ G x ′ G y ′ G z ′ ∣ = ∣ F y ′ F z ′ G y ′ G z ′ ∣ x ^ + ∣ F z ′ F x ′ G z ′ G x ′ ∣ y ^ + ∣ F x ′ F y ′ G x ′ G y ′ ∣ z ^ \vec \tau= \begin{vmatrix} \hat x & \hat y & \hat z \\ F^\prime_x &F^\prime_y & F^\prime_z \\ G^\prime_x &G^\prime_y & G^\prime_z \\ \end{vmatrix} = \begin{vmatrix} F^\prime_y & F^\prime_z \\ G^\prime_y & G^\prime_z \\ \end{vmatrix}\hat x+ \begin{vmatrix} F^\prime_z & F^\prime_x \\ G^\prime_z & G^\prime_x \\ \end{vmatrix}\hat y+ \begin{vmatrix} F^\prime_x & F^\prime_y \\ G^\prime_x & G^\prime_y \\ \end{vmatrix}\hat z τ = x^FxGxy^FyGyz^FzGz = FyGyFzGz x^+ FzGzFxGx y^+ FxGxFyGy z^

2)空间中的面
1. 平面的方程

平面的 法向量 n ⃗ = ( A , B , C ) \vec n=(A,B,C) n =(A,B,C)

  • 一般式:
    A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

  • 点法式:
    A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) + D = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)+D=0 A(xx0)+B(yy0)+C(zz0)+D=0

  • 截距式:
    x a + y b + z c = 1 \frac xa + \frac yb+\frac zc=1 ax+by+cz=1

  • 三点式:
    ∣ x − x 1 y − y 1 z − z 1 x − x 2 y − y 2 z − z 2 x − x 3 y − y 3 z − z 3 ∣ = 0 \begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x-x_2 & y-y_2 & z-z_2 \\ x-x_3 & y-y_3 & z-z_3 \\ \end{vmatrix} = 0 xx1xx2xx3yy1yy2yy3zz1zz2zz3 =0

平面过不共线的三点 ( x i , y i , z i ) ,   i ∈ { 1 , 2 , 3 } (x_i,y_i,z_i),\ i\in\{1,2,3\} (xi,yi,zi), i{1,2,3}

2. 曲面的方程
  • F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0
3. 旋转曲面

求曲线 Γ \Gamma Γ 绕直线 L L L 旋转一周所得到的曲面

M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0) 在直线 L L L 上; M 1 ( x 1 , y 1 , z 1 ) M_1(x_1,y_1,z_1) M1(x1,y1,z1) 在曲线 Γ \Gamma Γ 上; S ⃗ \vec S S 是直线 L L L 的方向向量; P P P 是所求曲面上任意一点

在这里插入图片描述
构建求解方程的 核心条件:
M 1 P → ⊥ s ⃗ , ∣ M 0 P → ∣ = ∣ M 0 M 1 → ∣ \overrightarrow{M_1P} \bot\vec s,\qquad |\overrightarrow{M_0P}|=|\overrightarrow{M_0M_1}| M1P s ,M0P =M0M1
L L L 是坐标轴时 (以 z z z 轴为例),直接用 x 2 + y 2 = x 1 2 + y 1 2 x^2+y^2=x^2_1+y_1^2 x2+y2=x12+y12 描述会 更简便 ,此时 x 1 , y 1 x_1,y_1 x1,y1 适合用以 z z z 为参数的参数方程直接带入来描述 x 1 , y 1 x_1,y_1 x1,y1 在曲线 Γ \Gamma Γ 上;与曲线 Γ \Gamma Γ 联立求解反而麻烦了

4. 曲面的 法线 与 切平面
F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 描述时 (在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 处)
  • 法向量:
    n ⃗ = ( F x ′ ( x 0 , y 0 , z 0 ) , F y ′ ( x 0 , y 0 , z 0 ) , F z ′ ( x 0 , y 0 , z 0 ) ) \vec n=(F^\prime_x(x_0,y_0,z_0),F^\prime_y(x_0,y_0,z_0),F^\prime_z(x_0,y_0,z_0)) n =(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))

  • 法 线:

x − x 0 F x ′ ( x 0 , y 0 , z 0 ) = y − y 0 F y ′ ( x 0 , y 0 , z 0 ) = z − z 0 F z ′ ( x 0 , y 0 , z 0 ) \frac{x-x_0}{F^\prime_x(x_0,y_0,z_0)}=\frac{y-y_0}{F^\prime_y(x_0,y_0,z_0)}=\frac{z-z_0}{F^\prime_z(x_0,y_0,z_0)} Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0

  • 切平面:

F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 + F z ′ ( x 0 , y 0 , z 0 ) ) ( z − z 0 ) = 0 F^\prime_x(x_0,y_0,z_0)(x-x_0)+F^\prime_y(x_0,y_0,z_0)(y-y_0+F^\prime_z(x_0,y_0,z_0))(z-z_0)=0 Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0+Fz(x0,y0,z0))(zz0)=0

z = f ( x , y ) z=f(x,y) z=f(x,y) 描述时 (在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 处)

F ( x , y , z ) = f ( x , y ) − z F(x,y,z)=f(x,y)-z F(x,y,z)=f(x,y)z ,然后 按照 ① 处理


(三)梯度 与 方向导数

1)梯度(矢量)- gradient

空间曲面 F ( x , y , z ) F(x,y,z) F(x,y,z) 在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 处,增长最快的矢量梯度
g r a d   F ∣ P 0 = (   F x ′ ( P 0 ) ,   F y ′ ( P 0 ) ,   F z ′ ( P 0 )   ) grad\ F|_{P_0}=(\ F^\prime_x(P_0),\ F^\prime_y(P_0),\ F^\prime_z(P_0)\ ) grad FP0=( Fx(P0), Fy(P0), Fz(P0) )

2)方向导数(标量)- directional derivative
1. 公式法

空间曲面 F ( x , y , z ) F(x,y,z) F(x,y,z) 在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 处,沿某一方向上 l ⃗ \vec l l 的变化率方向导数

方向导数 = 梯度 → ⋅ 方向余弦 → 方向导数 = \overrightarrow{梯度} \cdot \overrightarrow{方向余弦} 方向导数=梯度 方向余弦
∂ F ∂ l ⃗ ∣ P 0 = F x ′ ( P 0 ) c o s α + F y ′ ( P 0 ) c o s β + F z ′ ( P 0 ) c o s γ \left. \frac{\partial F}{\partial \vec l} \right|_{P_0} =F^\prime_x(P_0)cos\alpha+F^\prime_y(P_0)cos\beta+F^\prime_z(P_0)cos\gamma l F P0=Fx(P0)cosα+Fy(P0)cosβ+Fz(P0)cosγ
【注】 c o s α 、 c o s β 、 c o s γ cos\alpha、cos\beta、cos\gamma cosαcosβcosγ l ⃗ \vec l l 的方向余弦;求方向导数用 极坐标 通常会更好算

2. 定义法

∂ f ( x , y ) ∂ l ⃗ ∣ P 0 = lim ⁡ P → P 0 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) ∣ P P 0 ∣ \left. \frac{\partial f(x,y)}{\partial \vec l} \right|_{P_0}=\lim_{P\rightarrow P_0} \frac{f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)}{|PP_0|} l f(x,y) P0=PP0limPP0f(x0+Δx,y0+Δy)f(x0,y0)

定义法中,由 Δ x 、 Δ y \Delta x、 \Delta y ΔxΔy 来约束 “沿 l ⃗ \vec l l 方向”

当给定 l ⃗ = ( c o s α , s i n β ) \vec l=(cos\alpha,sin\beta) l =(cosα,sinβ) P 0 ( 0 , 0 ) P_0(0,0) P0(0,0) 时,有
∂ f ( x , y ) ∂ l ⃗ ∣ P 0 = lim ⁡ r → 0 + f ( r c o s α , r s i n β ) − f ( 0 , 0 ) ∣ r ∣ \left. \frac{\partial f(x,y)}{\partial \vec l} \right|_{P_0}=\lim_{r\rightarrow 0^+} \frac{f(rcos\alpha,rsin\beta)-f(0,0)}{|r|} l f(x,y) P0=r0+limrf(rcosα,rsinβ)f(0,0)


(四)散度 与 旋度

1)散度(标量)- divergence

对向量场 A ⃗ = ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) \vec A=(P(x,y,z),Q(x,y,z),R(x,y,z)) A =(P(x,y,z),Q(x,y,z),R(x,y,z))

散度:
d i v   A ⃗ = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z div\ \vec A=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} div A =xP+yQ+zR

2)旋度(矢量)- rotation

对向量场 A ⃗ = ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) \vec A=(P(x,y,z),Q(x,y,z),R(x,y,z)) A =(P(x,y,z),Q(x,y,z),R(x,y,z))

旋度:
r o t   A ⃗ = ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ rot\ \vec A= \begin{vmatrix} \hat x &\hat y & \hat z \\ \frac \partial{\partial x} &\frac \partial{\partial y} &\frac \partial{\partial z} \\ P & Q & R \end{vmatrix} rot A = x^xPy^yQz^zR


二、空间解析几何处理方式

(一)需要注意的细节

1)向量的夹角 ∈ [ 0 , π ] \in[0,\pi] [0,π]
2)二面角 ∈ [ 0 , π ] \in[0,\pi] [0,π]
3)直线的夹角 ∈ [ 0 , π 2 ] \in[0,\frac\pi2] [0,2π]

直线没有方向性,所以夹角在 [ 0 , π 2 ] [0,\frac\pi2] [0,2π]

4)法线方向的方向导数

法线是一条 直线 !!!

所以求法线方向的方向导数,是与法向量 同向 / 反向 两个方向

一共是两个解 !!!

4)找最小距离和

找两点到平面上某一点的最小距离和时,需要先判断两点 是否在平面的同一侧

即注意数形结合,只有在同一侧的时候,后面的方法才适用


(二)构建关系式的方法

核心是将 线 / 面 的关系 转化为 切线 / 法线 的关系

例如将直线夹角 或 二面角 转化为 切线 或 法线夹角

1)求平行线间距

设有平行线 L 1 、 L 2 L_1 、L_2 L1L2 ,在 L 1 、 L 2 L_1、L_2 L1L2 上分别任取一点 M 1 、 M 2 M_1、M_2 M1M2 ,连接 M 1 、 M 2 M_1、M_2 M1M2 得到向量 M 1 M 2 → \overrightarrow{M_1M_2} M1M2 ,设 L 1 L_1 L1 的方向向量为 τ ⃗ \vec \tau τ

则平行线间距 d d d 为:
d = ∣ M 1 M 2 → × τ ⃗ ∣ ∣ τ ⃗ ∣ d=\frac{|\overrightarrow{M_1M_2}\times\vec\tau|}{|\vec\tau|} d=τ M1M2 ×τ

M 1 M 2 →  和  τ ⃗ \overrightarrow{M_1M_2}\ 和\ \vec\tau M1M2   τ 可以扩展为一个平行四边形(参照平行四边形法则)
∣ M 1 M 2 → × τ ⃗ ∣ |\overrightarrow{M_1M_2}\times\vec\tau| M1M2 ×τ 得到的就是该平行四边形的面积
平行四边形面积( ∣ M 1 M 2 → × τ ⃗ ∣ |\overrightarrow{M_1M_2}\times\vec\tau| M1M2 ×τ ) ÷ \div ÷ 底边长度( ∣ τ ⃗ ∣ |\vec\tau| τ ) = 平行四边形的高( d d d )
平行四边形的高即为两平行线的间距

2)判断两直线共面

设有两直线 L 1 、 L 2 L_1 、L_2 L1L2 ,在 L 1 、 L 2 L_1、L_2 L1L2 上分别任取一点 M 1 、 M 2 M_1、M_2 M1M2 ,两直线方向向量分别为 s ⃗ 1 、 s ⃗ 2 \vec s_1、\vec s_2 s 1s 2

s ⃗ 1 、 s ⃗ 2 、 M 1 M 2 → \vec s_1、\vec s_2、\overrightarrow{M_1M_2} s 1s 2M1M2 的混合积,即求三向量构成的平行六面体的体积;如果体积为 0 则说明三向量共面
( s ⃗ 1 × s ⃗ 2 ) ⋅ M 1 M 2 → = 0 ⟹ L 1 、 L 2  共面 (\vec s_1\times \vec s_2)\cdot \overrightarrow{M_1M_2} =0 \Longrightarrow L_1、L_2\ 共面 (s 1×s 2)M1M2 =0L1L2 共面

3)找最小距离和

在平面上找一点 C ,使得空间中的 A、B 两点到 C 的距离之和最小

  • 过 A 点做平面的垂线 L ,垂线的方向向量 同 平面的法向量;建议把点法式化为参数方程,便于后面与平面方程联立
  • L 与 平面方程联立,求得垂线与平面的交点
  • 利用交点坐标和对称性,可以轻松确定出 A ′ A^\prime A 的坐标
  • 利用两点式构建 A ′ B A^\prime B AB 的直线方程,建议也化为参数方程的形式
  • A ′ B A^\prime B AB 与平面方程联立,解得点 C 坐标,C 点即为距离和最小点

在这里插入图片描述

4)求点到平面距离

P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0) , 平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

点到平面距离公式:
d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

5)构造过直线的 平面束方程

直线需要用交面式表示,设直线
L : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 L: \begin{cases} F(x,y,z)=0 \\ G(x,y,z)=0 \end{cases} L:{F(x,y,z)=0G(x,y,z)=0

F ( x , y , z ) + λ [ G ( x , y , z ) ] = 0 F(x,y,z)+\lambda[G(x,y,z)]=0 F(x,y,z)+λ[G(x,y,z)]=0
为过直线 L L L 的所有平面(平面束)

【注】 :可以利用平面束方程的法向量 垂直 / 平行于 另一平面的法向量,找到过直线 L L L 且 垂直 / 平行 于另一平面的平面方程;两平面联立,求得的交线即为 线在面上的投影

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值